MTCNN移植安卓并检测视频中人脸

继续此前的文章,使用vlc播放了rtsp流媒体视频后,想检测视频中的人脸,之前采用了opencv但是遇到低头、抬头和侧脸时候,效果就不太好。所以本篇介绍如何使用mtcnn来检测视频中的人脸。
大致流程:

一、Tensorflow 模型固化

将PNet、ONet、RNet 网络参数.npy固化成.pb格式,方便java载入, 固化后的文件在assets中,文件名mtcnn_freezed_model.pb。

二、引入android tensorflow lite 库

只需在build.gradle(module)最后添加以下几行语句即可。

dependencies {
    implementation fileTree(include: ['*.jar'], dir: 'libs')
    implementation 'com.android.support:appcompat-v7:27.1.1'
    implementation 'com.android.support.constraint:constraint-layout:1.1.3'
    testImplementation 'junit:junit:4.12'
    androidTestImplementation 'com.android.support.test:runner:1.0.2'
    androidTestImplementation 'com.android.support.test.espresso:espresso-core:3.0.2'
    compile(name: 'libvlc-3.0.0', ext: 'aar')
    implementation files('libs/androidutils.jar')
    compile 'org.tensorflow:tensorflow-android:+'
    implementation files('libs/libutils.jar')
}

三、新建MTCNN类

该类包含加载模型文件,并检测bitmap中的人脸

package com.cayden.face.facenet;

import android.content.res.AssetManager;
import android.graphics.Bitmap;
import android.graphics.Matrix;
import android.graphics.Point;
import android.util.Log;


import com.cayden.face.FaceApplication;

import org.tensorflow.contrib.android.TensorFlowInferenceInterface;

import java.util.Vector;

import static java.lang.Math.max;
import static java.lang.Math.min;

/**
 *  Created by caydencui on 2018/9/6.
 */
public class MTCNN {
    //参数
    private float factor=0.709f;
    private float PNetThreshold=0.6f;
    private float RNetThreshold=0.7f;
    private float ONetThreshold=0.7f;
    //MODEL PATH
    private static final String MODEL_FILE  = "file:///android_asset/mtcnn_freezed_model.pb";
    //tensor name
    private static final String PNetInName  ="pnet/input:0";
    private static final String[] PNetOutName =new String[]{"pnet/prob1:0","pnet/conv4-2/BiasAdd:0"};
    private static final String RNetInName  ="rnet/input:0";
    private static final String[] RNetOutName =new String[]{ "rnet/prob1:0","rnet/conv5-2/conv5-2:0",};
    private static final String ONetInName  ="onet/input:0";
    private static final String[] ONetOutName =new String[]{ "onet/prob1:0","onet/conv6-2/conv6-2:0","onet/conv6-3/conv6-3:0"};


    private static class SingletonInstance {
        private static final MTCNN INSTANCE = new MTCNN();
    }

    public static MTCNN getInstance() {
        return SingletonInstance.INSTANCE;
    }

    //安卓相关
    public  long lastProcessTime;   //最后一张图片处理的时间ms
    private static final String TAG="MTCNN";
    private AssetManager assetManager;
    private TensorFlowInferenceInterface inferenceInterface;

    private MTCNN() {
        assetManager= FaceApplication.getMyApplication().getAssets();
        loadModel();
    }



    private boolean loadModel() {
        //AssetManager
        try {
            inferenceInterface = new TensorFlowInferenceInterface(assetManager, MODEL_FILE);
            Log.d("MTCNN","[*]load model success");
        }catch(Exception e){
            Log.e("MTCNN","[*]load model failed"+e);
            return false;
        }
        return true;
    }
    //读取Bitmap像素值,预处理(-127.5 /128),转化为一维数组返回
    private float[] normalizeImage(Bitmap bitmap){
        int w=bitmap.getWidth();
        int h=bitmap.getHeight();
        float[] floatValues=new float[w*h*3];
        int[]   intValues=new int[w*h];
        bitmap.getPixels(intValues,0,bitmap.getWidth(),0,0,bitmap.getWidth(),bitmap.getHeight());
        float imageMean=127.5f;
        float imageStd=128;

        for (int i=0;i> 16) & 0xFF) - imageMean) / imageStd;
            floatValues[i * 3 + 1] = (((val >> 8) & 0xFF) - imageMean) / imageStd;
            floatValues[i * 3 + 2] = ((val & 0xFF) - imageMean) / imageStd;
        }
        return floatValues;
    }
    /*
       检测人脸,minSize是最小的人脸像素值
     */
    private Bitmap bitmapResize(Bitmap bm, float scale) {
        int width = bm.getWidth();
        int height = bm.getHeight();
        // CREATE A MATRIX FOR THE MANIPULATION。matrix指定图片仿射变换参数
        Matrix matrix = new Matrix();
        // RESIZE THE BIT MAP
        matrix.postScale(scale, scale);
        Bitmap resizedBitmap = Bitmap.createBitmap(
                bm, 0, 0, width, height, matrix, true);
        return resizedBitmap;
    }
    //输入前要翻转,输出也要翻转
    private  int PNetForward(Bitmap bitmap, float [][]PNetOutProb, float[][][]PNetOutBias){
        int w=bitmap.getWidth();
        int h=bitmap.getHeight();

        float[] PNetIn=normalizeImage(bitmap);
        Utils.flip_diag(PNetIn,h,w,3); //沿着对角线翻转
        inferenceInterface.feed(PNetInName,PNetIn,1,w,h,3);
        inferenceInterface.run(PNetOutName,false);
        int PNetOutSizeW=(int) Math.ceil(w*0.5-5);
        int PNetOutSizeH=(int) Math.ceil(h*0.5-5);
        float[] PNetOutP=new float[PNetOutSizeW*PNetOutSizeH*2];
        float[] PNetOutB=new float[PNetOutSizeW*PNetOutSizeH*4];
        inferenceInterface.fetch(PNetOutName[0],PNetOutP);
        inferenceInterface.fetch(PNetOutName[1],PNetOutB);
        //【写法一】先翻转,后转为2/3维数组
        Utils.flip_diag(PNetOutP,PNetOutSizeW,PNetOutSizeH,2);
        Utils.flip_diag(PNetOutB,PNetOutSizeW,PNetOutSizeH,4);
        Utils.expand(PNetOutB,PNetOutBias);
        Utils.expandProb(PNetOutP,PNetOutProb);
        /*
        *【写法二】这个比较快,快了3ms。意义不大,用上面的方法比较直观
        for (int y=0;y boxes, float threshold, String method){
        //NMS.两两比对
        //int delete_cnt=0;
        for(int i=0;i= threshold) { //删除prob小的那个框
                            if (box.score>box2.score)
                                box2.deleted=true;
                            else
                                box.deleted=true;
                            //delete_cnt++;
                        }
                    }
                }
            }
        }
        //Log.i(TAG,"[*]sum:"+boxes.size()+" delete:"+delete_cnt);
    }
    private int generateBoxes(float[][] prob,float[][][]bias,float scale,float threshold,Vector boxes){
        int h=prob.length;
        int w=prob[0].length;
        //Log.i(TAG,"[*]height:"+prob.length+" width:"+prob[0].length);
        for (int y=0;ythreadshold(0.6 here)
                if (score>PNetThreshold){
                    Box box=new Box();
                    //score
                    box.score=score;
                    //box
                    box.box[0]= Math.round(x*2/scale);
                    box.box[1]= Math.round(y*2/scale);
                    box.box[2]= Math.round((x*2+11)/scale);
                    box.box[3]= Math.round((y*2+11)/scale);
                    //bbr
                    for(int i=0;i<4;i++)
                        box.bbr[i]=bias[y][x][i];
                    //add
                    boxes.addElement(box);
                }
            }
        return 0;
    }
    private void BoundingBoxReggression(Vector boxes){
        for (int i=0;i PNet(Bitmap bitmap, int minSize){
        int whMin=min(bitmap.getWidth(),bitmap.getHeight());
        float currentFaceSize=minSize;  //currentFaceSize=minSize/(factor^k) k=0,1,2... until excced whMin
        Vector totalBoxes=new Vector();
        //【1】Image Paramid and Feed to Pnet
        while (currentFaceSize<=whMin){
            float scale=12.0f/currentFaceSize;
            //(1)Image Resize
            Bitmap bm=bitmapResize(bitmap,scale);
            int w=bm.getWidth();
            int h=bm.getHeight();
            //(2)RUN CNN
            int PNetOutSizeW=(int)(Math.ceil(w*0.5-5)+0.5);
            int PNetOutSizeH=(int)(Math.ceil(h*0.5-5)+0.5);
            float[][]   PNetOutProb=new float[PNetOutSizeH][PNetOutSizeW];;
            float[][][] PNetOutBias=new float[PNetOutSizeH][PNetOutSizeW][4];
            PNetForward(bm,PNetOutProb,PNetOutBias);
            //(3)数据解析
            Vector curBoxes=new Vector();
            generateBoxes(PNetOutProb,PNetOutBias,scale,PNetThreshold,curBoxes);
            //Log.i(TAG,"[*]CNN Output Box number:"+curBoxes.size()+" Scale:"+scale);
            //(4)nms 0.5
            nms(curBoxes,0.5f,"Union");
            //(5)add to totalBoxes
            for (int i=0;i> 16) & 0xFF) - imageMean) / imageStd;
            data[i * 3 + 1] = (((val >> 8) & 0xFF) - imageMean) / imageStd;
            data[i * 3 + 2] = ((val & 0xFF) - imageMean) / imageStd;
        }
    }
    /*
     * RNET跑神经网络,将score和bias写入boxes
     */
    private void RNetForward(float[] RNetIn,Vector boxes){
        int num=RNetIn.length/24/24/3;
        //feed & run
        inferenceInterface.feed(RNetInName,RNetIn,num,24,24,3);
        inferenceInterface.run(RNetOutName,false);
        //fetch
        float[] RNetP=new float[num*2];
        float[] RNetB=new float[num*4];
        inferenceInterface.fetch(RNetOutName[0],RNetP);
        inferenceInterface.fetch(RNetOutName[1],RNetB);
        //转换
        for (int i=0;i RNet(Bitmap bitmap, Vector boxes){
        //RNet Input Init
        int num=boxes.size();
        float[] RNetIn=new float[num*24*24*3];
        float[] curCrop=new float[24*24*3];
        int RNetInIdx=0;
        for (int i=0;i boxes){
        int num=ONetIn.length/48/48/3;
        //feed & run
        inferenceInterface.feed(ONetInName,ONetIn,num,48,48,3);
        inferenceInterface.run(ONetOutName,false);
        //fetch
        float[] ONetP=new float[num*2]; //prob
        float[] ONetB=new float[num*4]; //bias
        float[] ONetL=new float[num*10]; //landmark
        inferenceInterface.fetch(ONetOutName[0],ONetP);
        inferenceInterface.fetch(ONetOutName[1],ONetB);
        inferenceInterface.fetch(ONetOutName[2],ONetL);
        //转换
        for (int i=0;i ONet(Bitmap bitmap, Vector boxes){
        //ONet Input Init
        int num=boxes.size();
        float[] ONetIn=new float[num*48*48*3];
        float[] curCrop=new float[48*48*3];
        int ONetInIdx=0;
        for (int i=0;i boxes, int w, int h){
        //square
        for (int i=0;i detectFaces(Bitmap bitmap, int minFaceSize) {
        long t_start = System.currentTimeMillis();
        //【1】PNet generate candidate boxes
        Vector boxes=PNet(bitmap,minFaceSize);
        square_limit(boxes,bitmap.getWidth(),bitmap.getHeight());
        //【2】RNet
        boxes=RNet(bitmap,boxes);
        square_limit(boxes,bitmap.getWidth(),bitmap.getHeight());
        //【3】ONet
        boxes=ONet(bitmap,boxes);
        //return
        Log.i(TAG,"[*]Mtcnn Detection Time:"+(System.currentTimeMillis()-t_start));
        lastProcessTime=(System.currentTimeMillis()-t_start);
        return  boxes;
    }
}

四、视频流数据处理

由于vlc播放的流媒体视频格式是nv12,需要将其转为nv21,并保存为bitmap

  • 1、首先给出nv12转为nv21方法
    private void NV12ToNV21(byte[] nv12, byte[] nv21, int width, int height) {
        if (nv21 == null || nv12 == null) return;
        int framesize = width * height;
        int i = 0, j = 0;
        //System.arraycopy(nv21, test, nv12, test, framesize);
        for (i = 0; i < framesize; i++) {
            nv21[i] = nv12[i];
        }
        for (j = 0; j < framesize / 2; j += 2) {
            nv21[framesize + j] = nv12[j + framesize + 1];
        }
        for (j = 0; j < framesize / 2; j += 2) {
            nv21[framesize + j + 1] = nv12[j + framesize];
        }
    }
  • 2、然后给出nv21高效率转换为bitmap的方法
    可以查看此前的一篇文章 nv21高效率转换为bitmap
  • 3、调用mtcnn的人脸检测方法

Vector boxes = mtcnn.detectFaces(bitmap, 20);

  • 4、根据返回的数据 ,标记人脸
    protected void drawAnim(Vector faces, SurfaceView outputView, float scale_bit, int cameraId, String fps) {
        Paint paint = new Paint();
        Canvas canvas = ((SurfaceView) outputView).getHolder().lockCanvas();
        if (canvas != null) {
            try {
                int viewH = outputView.getHeight();
                int viewW = outputView.getWidth();
//                DLog.d("viewW:"+viewW+",viewH:"+viewH);
                canvas.drawColor(0, PorterDuff.Mode.CLEAR);
                if (faces == null || faces.size() == 0) return;
                for (int i = 0; i < faces.size(); i++) {
                    paint.setColor(Color.BLUE);
                    int size = DisplayUtil.dip2px(this, 3);
                    paint.setStrokeWidth(size);
                    paint.setStyle(Paint.Style.STROKE);
                    Box box = faces.get(i);
                    float[] rect = box.transform2float();
                    float x1 = rect[0] * scale_bit;
                    float y1 = rect[1] * scale_bit;
                    float rect_width = rect[2] * 0.5F;
                    RectF rectf = new RectF(x1, y1, x1 + rect_width, y1 + rect_width);
                    canvas.drawRect(rectf, paint);
                }

            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                ((SurfaceView) outputView).getHolder().unlockCanvasAndPost(canvas);
            }
        }
    }

项目源码

https://github.com/cayden/facesample
本项目主要基于vlc来播放流媒体视频

主要包含以下内容

  • 1、使用已经编译的libvlc来播放流媒体视频
  • 2、使用MTCNN进行人脸识别并标记人脸
  • 3、保存标记的人脸图片
  • 4、使用FACENET进行人脸比对
  • 未完待续...

v1.0.2

  • 1, 通过MTCNN检测人脸
  • 2, 对人脸进行标记

v1.0.1

  • 1, 获取返回的视频流数据
  • 2, 将数据nv12转换为nv21,并保存图片

v1.0.0

  • 1, added libvlc
  • 2, support for playing rtsp video stream

感谢大家的阅读,也希望能转发并关注我的公众号

MTCNN移植安卓并检测视频中人脸_第1张图片
我的公众号

你可能感兴趣的:(MTCNN移植安卓并检测视频中人脸)