- 【Pandas】pandas Series plot.box
liuweidong0802
PandasSeriespandas信息可视化数据分析
Pandas2.2SeriesPlotting方法描述Series.plot([kind,ax,figsize,…])用于绘制Series对象的数据可视化图表Series.plot.area([x,y,stacked])用于绘制堆叠面积图(StackedAreaPlot)Series.plot.bar([x,y])用于绘制垂直条形图(VerticalBarPlot)Series.plot.barh
- 大佬都在用的桑基图到底怎么做?告诉你个最简单的方法
永洪科技
python
桑基图,即桑基能量分流图,也叫桑基能量平衡图。因1898年MatthewHenryPhineasRiallSankey绘制的“蒸汽机的能源效率图”而闻名,此后便以其名字命名为“桑基图”。桑基图常被用于能源损耗情况、材料成分分析、金融数据可视化;追踪用户状态;追踪跑票、变动、迁移;追踪人口流动情况等等业务场景,表现分配、归类、变化、流动情况。桑基图好在哪?它是一种特定类型的流图,图中延伸的分支的宽度
- 【地图 Map3d】——2
花花 Show Python
pyecharts—从0到精通信息可视化数据分析python
解锁数据可视化的魔法钥匙——pyecharts实战指南在这个数据为王的时代,每一次点击、每一次交易、每一份报告背后都隐藏着无尽的故事与洞察。但你是否曾苦恼于如何将这些冰冷的数据转化为直观、吸引人的视觉盛宴?欢迎来到《pyecharts图形绘制大师班》在这里,你将不再受限于单调的表格和图表,而是学会如何运用pyecharts这一强大的Python数据可视化库,将复杂的数据转化为令人惊叹的交互式图形。
- Python 数据分析实战:跨境电商行业发展解析
萧十一郎@
pythonpython数据分析开发语言
目录一、案例背景二、代码实现2.1数据收集2.2数据探索性分析2.3数据清洗2.4数据分析2.4.1跨境电商消费者地域分布分析2.4.2跨境电商商品销售与价格关系分析2.4.3跨境电商行业未来发展预测三、主要的代码难点解析3.1数据收集3.2数据清洗-销售数据处理3.3数据分析-跨境电商消费者地域分布分析3.4数据分析-跨境电商商品销售与价格关系分析3.5数据可视化四、可能改进的代码4.1数据收集
- 通过Bokeh实现大规模数据可视化的最佳实践【从静态图表到实时更新】
步入烟尘
算法指南信息可视化Bokehpython
本文已收录于《Python超入门指南全册》本专栏专门针对零基础和需要进阶提升的同学所准备的一套完整教学,从基础到精通不断进阶深入,后续还有实战项目,轻松应对面试,专栏订阅地址:https://blog.csdn.net/mrdeam/category_12647587.html优点:订阅限时19.9付费专栏,私信博主还可进入全栈VIP答疑群,作者优先解答机会(代码指导、远程服务),群里大佬众多可以
- 轻松帮你搞清楚Python爬虫数据可视化的流程
liuhaoran___
python
Python爬虫数据可视化的流程主要是通过网络爬取所需的数据,并利用相关的库将数据分析结果以图形化的方式展示出来,帮助用户更直观地理解数据背后的信息。Python爬虫+数据可视化步骤1.获取目标网站的数据使用`requests`或者`selenium`库从网页上抓取信息。对于动态加载内容的页面可以考虑结合JavaScript渲染引擎。2.解析HTML内容提取有用信息常见工具如BeautifulSo
- python使用Bokeh库实现实时数据的可视化
Oona_01
python信息可视化数据分析
Python语言以其丰富的数据科学生态系统而闻名,其中Bokeh库作为一种功能强大的可视化工具,为实时数据的可视化提供了优秀的支持,本文将介绍如何使用Bokeh库实现实时数据的可视化,并提供相关代码实例,需要的朋友可以参考下使用Python的Bokeh库进行实时数据可视化的实现Bokeh简介实时数据可视化的需求使用Bokeh实现实时数据可视化的步骤代码示例Bokeh的进阶应用总结使用Python的
- Python用Bokeh处理大规模数据可视化的最佳实践
一键难忘
Bokehpython开发语言
用Bokeh处理大规模数据可视化的最佳实践在大规模数据处理和分析中,数据可视化是一个至关重要的环节。Bokeh是一个在Python生态中广泛使用的交互式数据可视化库,它具有强大的可扩展性和灵活性。本文将介绍如何使用Bokeh处理大规模数据可视化,并提供一些最佳实践和代码实例,帮助你高效地展示大数据集中的重要信息。1.为什么选择Bokeh?Bokeh是一个专为浏览器呈现而设计的可视化库,它支持高效渲
- 微软 LIDA 库:基于大模型的自动化数据分析与可视化
窝窝和牛牛
microsoft数据分析
微软LIDA库:基于大模型的自动化数据分析与可视化一、核心架构与LLM交互流程调用LLM生成数据摘要基于LLM推理分析目标LLM生成可视化代码结合图像生成模型优化原始数据Summarizer模块结构化摘要GoalExplorer模块可视化目标列表VizGenerator模块可执行图表代码Infographer模块风格化信息图表二、LLM交互核心功能1.多模型支持架构兼容主流LLM服务商:通过统一接
- 通过 Kibana 操作 Elasticsearch:从入门到实践
格子先生Lab
elasticsearch大数据搜索引擎
引言Kibana是Elasticsearch的可视化工具,提供了一个用户友好的界面来管理和操作Elasticsearch中的数据。通过Kibana,你可以轻松地执行数据搜索、创建可视化图表、构建仪表盘等操作。本文将带你从零开始学习如何通过Kibana操作Elasticsearch,掌握其基本功能和进阶操作。1.Kibana简介1.1什么是Kibana?Kibana是一个开源的数据可视化工具,专为E
- 使用Seaborn库中的`violinplot`函数绘制水平小提琴图(Violin Plot)是一种常见的数据可视化方法
code_welike
信息可视化数据分析数据挖掘Python
使用Seaborn库中的violinplot函数绘制水平小提琴图(ViolinPlot)是一种常见的数据可视化方法。水平小提琴图可以展示数据的分布特征,并可以对比不同组别之间的差异。本文将介绍如何使用Python和Seaborn库绘制水平小提琴图,并提供相应的源代码示例。首先,我们需要确保已经安装了Seaborn库。可以使用以下命令在Python中安装Seaborn:pipinstallseabo
- 使用Seaborn绘制水平小提琴图
YOUFDJ
python开发语言Python
使用Seaborn绘制水平小提琴图水平小提琴图是一种常用的数据可视化工具,可以用于展示不同类别之间的分布情况。在Python中,我们可以使用Seaborn库的catplot函数来轻松地绘制水平小提琴图。本文将介绍如何使用Seaborn绘制水平小提琴图,并附带相应的源代码示例。首先,确保你已经安装了Seaborn库。如果没有安装,可以使用以下命令在命令行中安装:pipinstallseaborn安装
- 使用Seaborn绘制小提琴图
CodeWG
python开发语言
使用Seaborn绘制小提琴图在数据分析与可视化中,小提琴图是一种常用的图表类型。它能够展示数据的分布情况,同时还能显示中位数、四分位数和异常值等统计指标。在Python中,我们可以使用Seaborn库来轻松地绘制小提琴图。下面就来详细介绍一下如何使用Seaborn来创建小提琴图。首先,我们需要导入必要的库和数据集。这里我们使用Seaborn自带的数据集tips作为例子。importseaborn
- 从入门到进阶:Python数据可视化实战技巧
Blossom.118
分布式系统与高性能计算领域信息可视化python开发语言网络协议springbootjava后端
在数据分析和数据科学领域,数据可视化是将复杂数据以直观图形展示的重要手段。Python作为数据科学领域的首选语言之一,提供了强大的数据可视化库,如Matplotlib、Seaborn、Plotly等。本文将从入门到进阶,逐步介绍Python数据可视化的实战技巧,帮助读者快速提升数据可视化能力。一、入门:Matplotlib基础Matplotlib是Python中最基础、最强大的数据可视化库之一。它
- Python Excel操作新玩法:从零到高手掌握openpyxl
xuefeng_210
python自动化java
openpyxl是Python中一个强大的第三方库,用于操作Excel文件,它可以读取、写入和修改Excel文件,并且支持Excel文件中的样式、图表等元素。openpyxl使得在Python中处理Excel文件变得非常简单和高效。本文将从入门到精通地介绍openpyxl的使用方法,带你掌握在Python中处理Excel文件的技巧。目录安装和导入创建和保存Excel文件读取Excel文件写入Exc
- 【Pandas】pandas Series plot.bar
liuweidong0802
PandasSeriespandas信息可视化
Pandas2.2SeriesPlotting方法描述Series.plot([kind,ax,figsize,…])用于绘制Series对象的数据可视化图表Series.plot.area([x,y,stacked])用于绘制堆叠面积图(StackedAreaPlot)Series.plot.bar([x,y])用于绘制垂直条形图(VerticalBarPlot)pandas.Series.pl
- 入门 Canvas:Web 绘图的强大工具
Hopebearer_
前端es6javascriptcanva可画
文章目录入门Canvas:Web绘图的强大工具一、Canvas简介二、Canvas的基本用法(一)绘制基本图形(二)绘制文本三、Canvas的应用场景(一)数据可视化(二)游戏开发(三)图像编辑四、Canvas的动画效果五、Canvas的优势与局限性(一)优势(二)局限性六、总结入门Canvas:Web绘图的强大工具在Web开发的广阔天地中,为了满足用户对丰富、交互性强的体验的不断追求,前端技术持
- 2020年全国职业院校技能大赛改革试点赛高职组“云计算”竞赛赛卷
春生黎至1005
云计算全国职业技能竞赛样题云计算
2020年全国职业院校技能大赛改革试点赛高职组“云计算”竞赛赛卷第一场次题目:OpenStack平台部署与运维某企业拟使用OpenStack搭建一个企业云平台,以实现资源池化弹性管理、企业应用集中管理、统一安全认证和授权等管理。系统架构如图1所示,IP地址规划如表1所示。图1系统架构图表1IP地址规划设备名称主机名接口IP地址说明云服务器1Controllereth0192.168.x.10/24
- Python 数据分析实战:宠物经济行业发展洞察
萧十一郎@
pythonpython数据分析宠物
目录一、案例背景二、代码实现2.1数据收集2.2数据探索性分析2.3数据清洗2.4数据分析2.4.1宠物用品用户满意度分析2.4.2宠物用品销售与价格关系分析2.4.3宠物经济行业未来发展预测三、主要的代码难点解析3.1数据收集3.2数据清洗-销售数据处理3.3数据分析-宠物用品用户满意度分析3.4数据分析-宠物用品销售与价格关系分析3.5数据可视化四、可能改进的代码4.1数据收集改进4.2数据清
- Fatal Python error: init_stdio_encoding: failed to get the Python codec name of the stdio encoding
CCLZMY
python开发语言后端
这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML图表FLowchart流程图导出与导入导出导入D:\Metag
- 基于STM32设计的健康检测设备(测温心率计步)(局域网)
DS小龙哥
智能家居与物联网项目实战stm32嵌入式单片机
1.项目介绍1.1开发背景本项目设计一款基于STM32F103RCT6微控制器的便携式健康监测设备,该设备能够实时监测并记录用户的生理参数,包括人体温度、心率以及日常活动中的步数,并具备将这些数据可视化显示在设备自带的OLED屏幕上的能力。此外,该设备还提供了通过Wi-Fi模块ESP8266将收集到的数据无线传输至用户的智能手机或个人计算机的功能,以便用户能够更加方便地管理自己的健康信息。为了实现
- 【IT大学生必会的】 10 种图表线性回归
.Boss.
深度学习开发语言人工智能机器学习算法
这段时间,不少同学提到了一些图表的问题。每次在使用matplotlib画图,运用这些图表说明问题的时候,很多时候是模糊的,比如说什么时候画什么图合适?其实这个根据你自己的需求,自己的想法来就行。今天的话,我这里举例在线性回归中,最常用的一些图表,应该可以cover绝大多数情况了。其他算法模型适用的图表,咱们在后面再给大家进行总结~至于数据集,表现方式,大家可以根据我给出的代码继续调整即可!那么,在
- 微软Data Formulator:用AI重塑数据可视化的未来
几道之旅
人工智能智能体及数字员工人工智能信息可视化
在数据驱动的时代,如何快速将复杂数据转化为直观的图表是每个分析师面临的挑战。微软研究院推出的开源工具DataFormulator,通过结合AI与交互式界面,重新定义了数据可视化的工作流。本文将深入解析这一工具的核心功能、安装方法及使用技巧,助你轻松驾驭数据之美。一、DataFormulator是什么?DataFormulator是一款基于大语言模型(LLM)的AI工具,旨在帮助用户通过自然语言和界
- Matplotlib| scatter函数
漂亮_大男孩
matplotlib
1.简介Matplotlib库中的scatter函数用于在坐标轴上创建散点图。这种图表显示了两个变量之间的关系,每个点代表了数据集中的一个观测值。scatter函数通常用于探索数据,特别是要查看两个变量是否存在某种相关性或模式。基本用法是scatter(x,y),其中x和y是长度相同的数组或列表,分别代表散点图中点的横坐标和纵坐标。此外,scatter函数还提供了多种可选参数来定制散点图的外观,例
- Matplotlib 柱形图
lly202406
开发语言
Matplotlib柱形图引言在数据可视化领域,柱形图是一种非常常见且强大的图表类型。它能够帮助我们直观地比较不同类别或组之间的数据大小。Matplotlib,作为Python中最受欢迎的数据可视化库之一,提供了丰富的绘图功能,其中包括创建柱形图。本文将详细介绍Matplotlib中的柱形图,包括其基本用法、高级特性以及如何进行优化。基本用法安装Matplotlib在开始使用Matplotlib之
- Matplotlib如何创建交互式图表?
EdgarBertram
matplotlib
Matplotlib是一个强大的Python绘图库,它可以用于生成高质量的静态图像。然而,Matplotlib同样支持创建交互式图表,这对于数据分析和可视化非常有用。交互式图表允许用户通过交互方式探索数据,例如缩放、平移或者查询数据点。下面我们将详细介绍如何使用Matplotlib创建交互式图表。一、安装与配置首先,确保你已经安装了Matplotlib库。你可以使用pip来安装:bash复制代码p
- 【入门初级篇】报表基础操作与功能介绍
#六脉神剑
低代码myBuilder产品运营
【入门初级篇】报表的基本操作与功能介绍视频要点(1)报表组件的创建(2)指标组件的使用:一级、二级指标操作演示(3)表格属性设置介绍(4)图表属性设置介绍(5)报表预览:绑定静态数据(6)介绍myBuilder内部模块:用报表低代码开发的示例介绍点击访问myBuilder产品运营平台CSDN站内资源下载myBuilder交流请加微信:MyBuilder88
- 《颠覆传统,用Web3.0技术手撸一个去中心化微博(含完整代码)》
煜bart
web3人工智能区块链
一、为什么你的下一个项目必须拥抱Web3.0?传统互联网正面临三大致命伤:-用户数据被巨头垄断(某浪删帖事件频发)-单点故障导致服务瘫痪(某云宕机损失过亿)-创作者收益被平台榨取(某音抽成高达70%)**Web3.0的破局方案:**-✅数据永久存储在IPFS/Arweave-✅智能合约自动分配收益-✅抗审查的链上内容存证---###二、核心技术栈揭秘(附对比图表)|技术|传统方案|Web3.0方案
- echarts图表在修改了数据之后,如何进行重新渲染?
小智玩前端
echartsjavascript前端
letmap=echarts.init(document.getElementById('map'));letoption=map.getOption()//获取option数据option.series[0].data=[1,2,3]//找到data修改数据map.setOption(option,true)//重新渲染
- echarts的tooltip自动轮播,dataZoom同步轮播
小智玩前端
echarts前端javascript
功能:tooltip轮播时,dataZoom也同步轮播,并且鼠标放上去之后,停止轮播;鼠标移出后重新触发轮播;封装成一个函数,直接用就行,代码如下:/*myChart:创建的图表实例startValue:dataZoom的起始值endValue:dataZoom的末尾值dataLength:x轴数据的长度*/autoPlay(myChart,startValue,endValue,dataLeng
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep