算法(8):动态规划

这是我最想写的一篇文章之一了~ 因为这玩意真难......


  • 目录:
    算法:附录
    算法(1):递归
    算法(2):链表
    算法(3):数组
    算法(4):字符串
    算法(5):二叉树
    算法(6):二叉查找树
    算法(7):队列和堆栈(附赠BFS和DFS)
    算法(8):动态规划
    算法(9):哈希表
    算法(10):排序
    算法(11):回溯法
    算法(12):位操作

例题1:求目标和(Target Sum,在算法(7)堆栈习题3中出现过,这里给出另一种解法)。给定一个数组以及一个目标数S,你可以给数组中每个数分配 运算符‘+’ 或 ‘-’ 其中之一,使得数组之和为目标S。输出共有多少种分配方式。
输入: nums is [1, 1, 1, 1, 1], S is 3.
输出: 5
解释:
-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3
代码解析:使用备忘录法。

class Solution:
    def findTargetSumWays(self, nums: list, S: int, ) -> int:
        if nums == []:
            return 0
        dic = {nums[0]: 1, -nums[0]: 1} if nums[0] != 0 else {0: 2}
        for i in range(1, len(nums)):
            tdic = {}
            for d in dic:
                tdic[d + nums[i]] = tdic.get(d + nums[i], 0) + dic.get(d, 0)
                tdic[d - nums[i]] = tdic.get(d - nums[i], 0) + dic.get(d, 0)
            dic = tdic
        return dic.get(S, 0)

if __name__ == '__main__':
    nums = [1, 1, 1, 1, 1]
    S = 3.
    solution = Solution()
    steps = solution.findTargetSumWays(nums,S)
    print(steps)

例题2:最大子数组(Maximum Subarray),给出一个数组,找到一个连续的子数组(至少一个元素),该子数组有最大和,返回该最大和。
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: [4,-1,2,1] 有最大和,为6.

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        curSum = maxSum = A[0]
        for num in A[1:]:
            # 这句代码可以理解成:curSum = num if curSum < 0 else num + curSum
            curSum = max(num, curSum + num)
            maxSum = max(maxSum, curSum)

        return maxSum

例题3:解码方法(Decode Ways)。
给A到Z编码如下:

'A' -> 1
'B' -> 2
...
'Z' -> 26

现如今给一个非空字符串,里面由数字0到9组成,问有多少种解码方式?
例题:
输入: "226"
输出: 3
解释: "BZ" (2 26), "VF" (22 6), or "BBF" (2 2 6).

注意事项:我当时做这道题的时候忽略了0这个特殊的存在,因为0不对应任何一个字母。比如一个字符串中出现了‘00’,那么该字符串输出就一定是0......下面给出了两种代码,供参考。

class Solution:
    def numDecodings(self, s: str) -> int:
        # v, w, p = 0, int(s>''), ''
        # for d in s:
        #     v, w, p = w, (d>'0')*w + (9

例题4:丑数,丑数为只能被2,3,5整除的数(1定义为第一个丑数),输入一个整数n,输出第n个丑数。
输入:10
输出:12(前十个丑数序列:1, 2, 3, 4, 5, 6, 8, 9, 10, 12)
代码解释:用了三指针技术,对每个丑数再乘以2,3或5就是新的丑数,但是为了使得输出有序,需要三个指针来记录位置。

class Solution:
    def nthUglyNumber(self, n: int) -> int:
        ugly = [1]
        i2, i3, i5 = 0, 0, 0
        while n > 1:
            u2, u3, u5 = 2 * ugly[i2], 3 * ugly[i3], 5 * ugly[i5]
            umin = min((u2, u3, u5))
            if umin == u2:
                i2 += 1
            if umin == u3:
                i3 += 1
            if umin == u5:
                i5 += 1
            ugly.append(umin)
            n -= 1
        return ugly[-1]

例题5:最长递增子序列(Longest Increasing Subsequence),给出一个未排序的整型数组,返回其最长递增子序列长度。
输入: [10,9,2,5,3,7,101,18]
输出: 4 (其中最长递增子序列为[2,3,7,101])
代码解释:(下文sub 数组里存放的元素可能不是实际的递增子序列,但其长度是准确的)

leetcode(Longest Increasing Subsequence)

  1. initial sub = [ ].
  2. traversing the nums:
    a) if val > sub's all elements, then subsequence length increased by 1, sub.append(val);
    b) if sub[i-1] < val < sub[i], then we find a smaller value, update sub[i] = val. Some of the elements stored in the sub[ ] are known subsequences, and the other part is elements of other possible new subsequences. However, the length of the known subsequences is unchanged.
  3. return the sub[ ]'s length.

Here is the solution's track, as we have nums = [8, 2, 5, 1, 6, 7, 9, 3],when we traversing the nums:

i = 0, sub = [8]
i = 1, sub = [2]
i = 2, sub = [2, 5]
i = 3, sub = [1, 5], # element has been changed, but the sub's length has not changed.
i = 4, sub = [1, 5, 6]
i = 5, sub = [1, 5, 6, 7]
i = 6, sub = [1, 5, 6, 7, 9]
i = 7, sub = [1, 3, 6, 7, 9] #done! Although the elements are not correct, but the length is correct.

Because of sub[ ] is incremental, we can use a binary search to find the correct insertion position.

class Solution:
    def lengthOfLIS(self, nums: List[int]) -> int:
        # O(nlogn) solution with binary search
        def binarySearch(sub, val):
            lo, hi = 0, len(sub)-1
            while(lo <= hi):
                mid = lo + (hi - lo)//2
                if sub[mid] < val:
                    lo = mid + 1
                elif val < sub[mid]:
                    hi = mid - 1
                else:
                    return mid
            return lo

        sub = []
        for val in nums:
            pos = binarySearch(sub, val)
            if pos == len(sub):
                sub.append(val)
            else:
                sub[pos] = val
        return len(sub)

我先把常见问题写在这,省的日后忘了:

  1. 求一个字符串的最长回文子串

LeetCode 上的五种解法
马拉车算法


  1. 两个字符串的最长子序列

最长子序列

算法(8):动态规划_第1张图片
1
算法(8):动态规划_第2张图片
2

  1. 两个字符串的最长公共子串

最长公共子串

公式比最长子序列更简单,如下所示:

算法(8):动态规划_第3张图片
公共字串


  1. 背包问题

背包九讲PDF下载链接:http://vdisk.weibo.com/s/zmfTPG2vgAcNV


  1. 股票买卖问题

5种股票买卖问题
上面的第五道题,买卖需要冷却的问题,可参考下面链接,讲的更详细,代码也更精致:Best Time to Buy and Sell Stock with Cooldown


你可能感兴趣的:(算法(8):动态规划)