我诈尸啦!
高三退役选手好不容易抛弃天利和金考卷打场CF,结果打得和shi一样……还因为queue太长而unrated了!一个学期不敲代码实在是忘干净了……
没分该没分,考题还是要订正的 =v= 欢迎阅读本题解!
P.S. 这几个算法我是一个也想不起来了 TAT
题目链接
Codeforces 1106F Lunar New Year and a Recursive Sequence 新年和递推数列
题意描述
某数列\(\{f_i\}\)递推公式:\[f_i = (\prod_{j=1}^kf_{i-j}^{b_j}) \bmod p\]
其中\(b\)是已知的长度为\(k\)的数列,\(p = 998244353\),\(f_1 = f_2 = ... = f_{k-1} = 1\),\(f_k\)未知。
给出两个数\(n, m\),构造一个\(f_k\)使得\(f_n = m\),无解输出-1。
\(k \le 100, n \le 10^9\)
题解
数论!真令人头秃!
首先这个数据范围让人想到什么?矩阵乘法!
矩阵乘法想推这个全是乘法和乘方的递推数列咋办?取对数!离散对数!
于是这道题关键的两个考点就被你发现啦!
(然而我太菜了,并不能发现 = =)
什么是离散对数?
众所周知(众==学过NTT的人等),这个喜闻乐见的模数\(p = 998244353\)有个原根\(g=3\),\(g^i(0\le i < P - 1)\)和\(1\le x < P\)一一对应。那么类比我们学过的对数,称这个\(i\)为\(x\)的离散对数。
令数列\(h_i\)为\(f_i\)的离散对数。
那么有递推式:\[h_i = (\sum_{j=1}^kb_j\cdot h_{i-j}) \bmod (p - 1)\]
其中\(h_1 = h_2 = ... = h_{k-1} = 0\)。注意模数变成了\(p - 1\)(费马小定理)。
这个就可以用矩阵加速了!如果我们把\(h_k\)设为1带进去,求得\(h_n = c\),那么有\(h_n = c \cdot h_k \bmod (p - 1)\);
\(h_n\)即为\(m\)的离散对数,用BSGS可求;
exgcd解刚才这个同余方程即可得到\(h_k\);
\(f_k = g^{h_k}\),快速幂即可得到\(f_k\)。
如果exgcd发现没有解的话就输出-1。
是不是思路非常清晰啊~
代码
#include
#include
#include
#include
#include
#include
#define space putchar(' ')
#define enter putchar('\n')
using namespace std;
typedef long long ll;
template
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
const int N = 102, P = 998244353, P2 = 998244352, G = 3;
int K;
ll b[N], n, m, C;
namespace BSGS {
const int S = 32000, M = 2000000;
int cnt = 0, adj[M + 5], nxt[S + 5];
ll key[S + 5], val[S + 5];
void insert(ll K, ll V){
int p = K % M;
key[++cnt] = K;
val[cnt] = V;
nxt[cnt] = adj[p];
adj[p] = cnt;
}
ll search(ll K){
for(int u = adj[K % M]; u; u = nxt[u])
if(key[u] == K) return val[u];
return -1;
}
void init(){
ll sum = 1;
for(int i = 1; i <= S; i++)
sum = sum * G % P;
ll tot = 1;
for(int i = 1; (i - 1) * S < P - 1; i++)
tot = tot * sum % P, insert(tot, i * S);
}
ll log(ll x){
ll sum = 1, ret;
for(int i = 1; i <= S; i++){
sum = sum * G % P;
ret = search(sum * x % P);
if(~ret && ret < P - 1) return ret - i;
}
assert(0);
return -1;
}
}
struct matrix {
ll g[N][N];
matrix(){
memset(g, 0, sizeof(g));
}
matrix(int x){
memset(g, 0, sizeof(g));
for(int i = 1; i <= K; i++)
g[i][i] = 1;
}
matrix operator * (const matrix &b){
matrix c;
for(int i = 1; i <= K; i++)
for(int j = 1; j <= K; j++)
for(int k = 1; k <= K; k++)
c.g[i][j] = (c.g[i][j] + g[i][k] * b.g[k][j]) % P2;
return c;
}
};
ll qpow(ll a, ll x){
ll ret = 1;
while(x){
if(x & 1) ret = ret * a % P;
a = a * a % P;
x >>= 1;
}
return ret;
}
matrix qpow(matrix a, ll x){
matrix ret(1);
while(x){
if(x & 1) ret = ret * a;
a = a * a;
x >>= 1;
}
return ret;
}
ll calcC(){
matrix ret, op;
ret.g[K][1] = 1;
for(int i = 1; i < K; i++)
op.g[i][i + 1] = 1;
for(int i = 1; i <= K; i++)
op.g[K][i] = b[K - i + 1];
ret = qpow(op, n - K) * ret;
return ret.g[K][1];
}
void exgcd(ll a, ll b, ll &g, ll &x, ll &y){
if(!b) return (void)(x = 1, y = 0, g = a);
exgcd(b, a % b, g, y, x);
y -= x * (a / b);
}
ll solve(ll A, ll B){ //Ax % P2 == B, solve x
ll a = A, b = P2, g, x, y;
exgcd(a, b, g, x, y);
if(B % g) return -1;
x *= B / g, y *= B / g;
ll t = b / g;
x = (x % t + t) % t;
return x;
}
int main(){
BSGS::init();
read(K);
for(int i = 1; i <= K; i++) read(b[i]);
read(n), read(m);
C = calcC();
m = BSGS::log(m);
ll ans = solve(C, m);
if(ans == -1) puts("-1");
else write(qpow(G, ans)), enter;
return 0;
}