环境:
kubernetes 1.11+/openshift3.11
自定义metric HPA原理:
首选需要注册一个apiservice(custom metrics API)。
当HPA请求metrics时,kube-aggregator
(apiservice的controller)会将请求转发到adapter,adapter作为kubernentes集群的pod,实现了Kubernetes resource metrics API and custom metrics API,它会根据配置的rules从Prometheus抓取并处理metrics,在处理(如重命名metrics等)完后将metric通过custom metrics API返回给HPA。最后HPA通过获取的metrics的value对Deployment/ReplicaSet进行扩缩容。
adapter作为extension-apiserver
,充当了代理kube-apiserver请求的功能。
如下是k8s-prometheus-adapter apiservice的定义,kube-aggregator
通过下面的service
将请求转发给adapter。v1beta1.custom.metrics.k8s.io
是写在k8s-prometheus-adapter代码中的,因此不能任意改变。
apiVersion: apiregistration.k8s.io/v1beta1
kind: APIService
metadata:
name: v1beta1.custom.metrics.k8s.io
spec:
service:
name: custom-metrics-apiserver
namespace: custom-metrics
group: custom.metrics.k8s.io
version: v1beta1
insecureSkipTLSVerify: true
groupPriorityMinimum: 100
versionPriority: 100
部署:
github下载k8s-prometheus-adapter
参照官方文档部署adapter:
pull镜像:
directxman12/k8s-prometheus-adapter:latest
,修改镜像tag并push到本地镜像仓库生成证书:运行如下shell脚本(来自官方)生成cm-adapter-serving-certs.yaml,并将其拷贝到
manifests/
目录下,该证书用于kube-aggregator
与adapter通信时认证adapter。注意下面证书有效时间为5年(43800h)以及授权的域名。#!/usr/bin/env bash # exit immediately when a command fails set -e # only exit with zero if all commands of the pipeline exit successfully set -o pipefail # error on unset variables set -u # Detect if we are on mac or should use GNU base64 options case $(uname) in Darwin) b64_opts='-b=0' ;; *) b64_opts='--wrap=0' esac go get -v -u github.com/cloudflare/cfssl/cmd/... export PURPOSE=metrics echo '{"signing":{"default":{"expiry":"43800h","usages":["signing","key encipherment","'${PURPOSE}'"]}}}' > "ca-config.json" export SERVICE_NAME=custom-metrics-apiserver export ALT_NAMES='"custom-metrics-apiserver.custom-metrics","custom-metrics-apiserver.custom-metrics.svc"' echo "{\"CN\":\"${SERVICE_NAME}\", \"hosts\": [${ALT_NAMES}], \"key\": {\"algo\": \"rsa\",\"size\": 2048}}" | \ cfssl gencert -ca=ca.crt -ca-key=ca.key -config=ca-config.json - | cfssljson -bare apiserver cat <<-EOF > cm-adapter-serving-certs.yaml apiVersion: v1 kind: Secret metadata: name: cm-adapter-serving-certs data: serving.crt: $(base64 ${b64_opts} < apiserver.pem) serving.key: $(base64 ${b64_opts} < apiserver-key.pem) EOF
可以在custom-metrics-apiservice.yaml中设置
insecureSkipTLSVerify: true
时,kube-aggregator
不会校验adapter的如上证书。如果需要启用校验,则需要在caBundle中添加openshift集群的ca证书(非openshift集群的自签证书会被认为是不可信任的证书),将openshift集群master节点的/etc/origin/master/ca.crt进行base64转码黏贴到caBundle字段即可。base64 ca.crt
也可以黏贴openshift集群master节点的/root/.kube/config文件中的
clusters.cluster.certificate-authority-data
字段- 创建命名空间:
kubectl create namespace custom-metrics
- 创建命名空间:
openshift的kube-system下面可能没有role
extension-apiserver-authentication-reader
,如果不存在,则需要创建apiVersion: rbac.authorization.k8s.io/v1 kind: Role metadata: annotations: rbac.authorization.kubernetes.io/autoupdate: "true" labels: kubernetes.io/bootstrapping: rbac-defaults name: extension-apiserver-authentication-reader namespace: kube-system rules: - apiGroups: - "" resourceNames: - extension-apiserver-authentication resources: - configmaps verbs: - get
修改custom-metrics-apiserver-deployment.yaml的
--prometheus-url
字段,指向正确的prometheus创建其他组件:
kubectl create -f manifests/
在部署时会创建一个名为
custom-metrics-resource-reader
的clusterRole
,用于授权adapter读取kubernetes cluster的资源,可以看到其允许读取的资源为namespaces/pods/services
apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: custom-metrics-resource-reader rules: - apiGroups: - "" resources: - namespaces - pods - services verbs: - get - list
部署demo:
部署官方demo
# cat sample-app.deploy.yaml apiVersion: apps/v1 kind: Deployment metadata: name: sample-app labels: app: sample-app spec: replicas: 1 selector: matchLabels: app: sample-app template: metadata: labels: app: sample-app spec: containers: - image: docker-local.art.aliocp.csvw.com/openshift3/autoscale-demo:v0.1.2 name: metrics-provider ports: - name: http containerPort: 8080
创建service
apiVersion: v1 kind: Service metadata: labels: app: sample-app name: sample-app namespace: custom-metrics spec: ports: - name: http port: 80 protocol: TCP targetPort: 8080 selector: app: sample-app type: ClusterIP
在
custom-metrics
命名空间下验证可以获取到metricscurl http://$(kubectl get service sample-app -o jsonpath='{ .spec.clusterIP }')/metrics
部署serviceMonitor
由于HPA需要用到
namespace
和pod
等kubernetes的资源信息,因此需要使用servicemonitor注册方式来为metrics添加这些信息openshift Prometheus operator对servicemonitor的限制如下
serviceMonitorNamespaceSelector: matchExpressions: - key: openshift.io/cluster-monitoring operator: Exists serviceMonitorSelector: matchExpressions: - key: k8s-app operator: Exists
因此需要给
custom-metrics
命名空间添加标签oc label namespace custom-metrics openshift.io/cluster-monitoring=true
在
openshift-monitoring
命名空间中创建service-monitor# cat service-monitor.yaml kind: ServiceMonitor apiVersion: monitoring.coreos.com/v1 metadata: name: sample-app labels: k8s-app: testsample app: sample-app spec: namespaceSelector: any: true selector: matchLabels: app: sample-app endpoints: - port: http
添加权限
oc adm policy add-cluster-role-to-user view system:serviceaccount:openshift-monitoring:prometheus-k8s oc adm policy add-role-to-user view system:serviceaccount:openshift-monitoring:prometheus-k8s -n custom-metrics
测试HPA
创建HPA,表示1秒请求大于0.5个时开始扩容
# cat sample-app-hpa.yaml kind: HorizontalPodAutoscaler apiVersion: autoscaling/v2beta1 metadata: name: sample-app spec: scaleTargetRef: # point the HPA at the sample application # you created above apiVersion: apps/v1 kind: Deployment name: sample-app # autoscale between 1 and 10 replicas minReplicas: 1 maxReplicas: 10 metrics: # use a "Pods" metric, which takes the average of the # given metric across all pods controlled by the autoscaling target - type: Pods pods: # use the metric that you used above: pods/http_requests metricName: http_requests_per_second # target 500 milli-requests per second, # which is 1 request every two seconds targetAverageValue: 500m
通过
oc describe hpa sample-app
查看hpa是否运行正常持续执行命令
curl http://$(kubectl get service sample-app -o jsonpath='{ .spec.clusterIP }')/metrics
发出请求通过命令
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/custom-metrics/pods/*/http_requests_per_second"
查看其对应的value
值,当其值大于500m时开始扩容# oc get pod NAME READY STATUS RESTARTS AGE sample-app-6d55487cdd-dc6qz 1/1 Running 0 18h sample-app-6d55487cdd-w6bbb 1/1 Running 0 5m sample-app-6d55487cdd-zbdbr 1/1 Running 0 5m
过段时间,当
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/custom-metrics/pods/*/http_requests_per_second"
的值持续低于500m时进行缩容,缩容时间由--horizontal-pod-autoscaler-downscale-stabilization
指定,默认5分钟。提供
oc get hpa
的TARGETS
字段可以查看扩缩容比例# oc get hpa NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE sample-app Deployment/sample-app 66m/500m 1 10 1 3h
Adapter config
部署adapter前需要配置adapter的rule,用于预处理metrics,默认配置为manifests/custom-metrics-config-map.yaml
。adapter的配置主要分为4个:
Discovery:指定需要处理的Prometheus的metrics。通过seriesQuery挑选需要处理的metrics集合,可以通过seriesFilters精确过滤metrics。
seriesQuery可以根据标签进行查找(如下),也可以直接指定metric name查找
seriesQuery: '{__name__=~"^container_.*_total",container_name!="POD",namespace!="",pod_name!=""}' seriesFilters: - isNot: "^container_.*_seconds_total"
seriesFilters:
is:
, 匹配包含该正则表达式的metrics. isNot: , 匹配不包含该正则表达式的metrics. Association:设置metric与kubernetes resources的映射关系,kubernetes resorces可以通过
kubectl api-resources
命令查看。overrides会将Prometheus metric label与一个kubernetes resource(下例为deployment)关联。需要注意的是该label必须是一个真实的kubernetes resource,如metric的pod_name可以映射为kubernetes的pod resource,但不能将container_image映射为kubernetes的pod resource,映射错误会导致无法通过custom metrics API获取正确的值。这也表示metric中必须存在一个真实的resource 名称,将其映射为kubernetes resource。resources: overrides: microservice: {group: "apps", resource: "deployment"}
Naming:用于将prometheus metrics名称转化为custom metrics API所使用的metrics名称,但不会改变其本身的metric名称,即通过
curl http://$(kubectl get service sample-app -o jsonpath='{ .spec.clusterIP }')/metrics
获得的仍然是老的metric名称。如果不需要可以不执行这一步。# match turn any name
_total to _per_second # e.g. http_requests_total becomes http_requests_per_second name: matches: "^(.*)_total$" as: "${1}_per_second" 如本例中HPA后续可以通过
/apis/{APIService-name}/v1beta1/namespaces/{namespaces-name}/pods/*/http_requests_per_second
获取metricsQuerying:处理调用custom metrics API获取到的metrics的value,该值最终提供给HPA进行扩缩容
# convert cumulative cAdvisor metrics into rates calculated over 2 minutes metricsQuery: "sum(rate(<<.Series>>{<<.LabelMatchers>>,container_name!="POD"}[2m])) by (<<.GroupBy>>)"
metricsQuery
字段使用Go template将URL请求转变为Prometheus的请求,它会提取custom metrics API请求中的字段,并将其划分为metric name,group-resource,以及group-resource中的一个或多个objects,对应如下字段:Series
: metric名称LabelMatchers
: 以逗号分割的objects,当前表示特定group-resource加上命名空间的label(如果该group-resource 是namespaced的)GroupBy
:以逗号分割的label的集合,当前表示LabelMatchers中的group-resource label
假设metrics
http_requests_per_second
如下http_requests_per_second{pod="pod1",service="nginx1",namespace="somens"} http_requests_per_second{pod="pod2",service="nginx2",namespace="somens"}
当调用
kubectl get --raw "/apis/{APIService-name}/v1beta1/namespaces/somens/pods/*/http_request_per_second"
时,metricsQuery
字段的模板的实际内容如下:Series: "http_requests_total"
LabelMatchers: "pod=~\"pod1|pod2",namespace="somens"
GroupBy:pod
adapter使用字段
rules
和externalRules
分别表示custom metrics和external metrics,如本例中apiVersion: v1 kind: ConfigMap metadata: name: adapter-config namespace: openshift-monitoring data: config.yaml: | externalRules: - seriesQuery: '{namespace!="",pod!=""}' seriesFilters: [] resources: overrides: namespace: resource: namespace pod: resource: pod metricsQuery: sum(rate(<<.Series>>{<<.LabelMatchers>>}[22m])) by (<<.GroupBy>>) rules: - seriesQuery: '{namespace!="",pod!=""}' seriesFilters: [] resources: overrides: namespace: resource: namespace pod: resource: pod name: matches: "^(.*)_total" as: "${1}_per_second" metricsQuery: sum(rate(<<.Series>>{<<.LabelMatchers>>}[2m])) by (<<.GroupBy>>)
HPA的配置
HPA通常会根据type从aggregated APIs (metrics.k8s.io
, custom.metrics.k8s.io
, external.metrics.k8s.io
)的资源路径上拉取metrics
HPA支持的metrics类型有4种(下述为v2beta2的格式):
resource:目前仅支持
cpu
和memory
。target可以指定数值(targetAverageValue
)和比例(targetAverageUtilization
)进行扩缩容HPA从
metrics.k8s.io
获取resource metrics
pods:custom metrics,这类metrics描述了pod类型,target仅支持按指定数值(
targetAverageValue
)进行扩缩容。targetAverageValue
用于计算所有相关pods上的metrics的平均值type: Pods pods: metric: name: packets-per-second target: type: AverageValue averageValue: 1k
HPA从
custom.metrics.k8s.io
获取custom metrics
object:custom metrics,这类metrics描述了相同命名空间下的(非pod)类型。target支持通过
value
和AverageValue
进行扩缩容,前者直接将metric与target比较进行扩缩容,后者通过metric/相关的pod数目
与target比较进行扩缩容type: Object object: metric: name: requests-per-second describedObject: apiVersion: extensions/v1beta1 kind: Ingress name: main-route target: type: Value value: 2k
external:kubernetes 1.10+。这类metrics与kubernetes集群无关(pods和object需要与kubernetes中的某一类型关联)。与object类似,target支持通过
value
和AverageValue
进行扩缩容。由于external会尝试匹配所有kubernetes资源的metrics,因此实际中不建议使用该类型。HPA从
external.metrics.k8s.io
获取external metrics
- type: External external: metric: name: queue_messages_ready selector: "queue=worker_tasks" target: type: AverageValue averageValue: 30
1.6版本支持多metrics的扩缩容,当其中一个metrics达到扩容标准时就会创建pod副本(当前副本
注:target的value的一个单位可以划分为1000份,每一份以m
为单位,如500m表示1/2
个单位。参见Quantity
kubernetes HPA的算法如下:
desiredReplicas = ceil[currentReplicas * ( currentMetricValue / desiredMetricValue )]
当使用targetAverageValue
或targetAverageUtilization
时,currentMetricValue会取HPA指定的所有pods的metric的平均值
Kubernetes metrics的获取
假设注册的APIService为custom.metrics.k8s.io/v1beta1,在注册好APIService后HorizontalPodAutoscaler controller会从以/apis/custom.metrics.k8s.io/v1beta1
为根API的路径上抓取metrics。metrics的API path可以分为namespaced
和non-namespaced
类型的。通过如下方式校验HPA是否可以获取到metrics:
namespaced
- 获取指定namespace下指定object类型和名称的metrics
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/{namespace-name}/{object-type}/{object-name}/{metric-name...}"
如获取monitor
命名空间下名为grafana
的pod的start_time_seconds
metric
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/monitor/pods/grafana/start_time_seconds"
- 获取指定namespace下所有特定object类型的metrics
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/{namespace-name}/pods/*/{metric-name...}"
如获取monitor
命名空间下名为所有pod的start_time_seconds
metric
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/monitor/pods/*/start_time_seconds"
- 使用labelSelector可以选择带有特定label的object
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/{namespace-name}/{object-type}/{object-name}/{metric-name...}?labelSelector={label-name}"
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/{namespace-name}/pods/*/{metric-name...}?labelSelector={label-name}"
non-namespaced
non-namespaced和namespaced的类似,主要有node,namespace,PersistentVolume等。non-namespaced访问有些与custom metrics API描述不一致。
- 访问object为namespace的方式如下如下
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/{namespace-name}/metrics/{metric-name...}"
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/*/metrics/{metric-name...}"
- 访问node的方式如下
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/nodes/{node-name}/{metric-name...}"
DEBUG:
使用如下方式查看注册的APIService发现的所有rules
kubectl get --raw /apis/custom.metrics.k8s.io/v1beta1
如果获取失败,可以看下使用
oc get apiservice v1beta1.custom.metrics.k8s.io -oyaml
查看status
和message
的相关信息如果获取到的resource为空,则需要校验deploy中的Prometheus url是否正确,是否有权限等
通过如下方式查看完整的请求过程(--v=8)
kubectl get --raw “/apis/custom.metrics.k8s.io/v1beta1/namespaces/{namespace-name}/pods/*/{metric-name...}" --v=8
如果上述过程正确,但获取到的items为空
- 首先保证k8s-prometheus-adapter的参数
--metrics-relist-interval
设置值大于Prometheus的参数scrape_interval
- 确保k8s-prometheus-adapter
rules
的seriesQuery
规则可以抓取到Prometheus的数据 - 确保k8s-prometheus-adapter
rules
的metricsQuery
规则可以抓取到计算出数据,此处需要注意的是,如果使用到了计算某段时间的数据,如果时间设置过短,可能导致没有数据生成
- 首先保证k8s-prometheus-adapter的参数
TIPS:
官方提供了End-to-end walkthrough,但需要采集的metrics中包含
pod
和namespace
label,否则在官方默认配置下无法采集到metrics。Configuration Walkthroughs一步步讲解了如何配置adapter config
在goland里面使用如下参数可以远程调试adapter:
--secure-port=6443 --tls-cert-file=D:\adapter\serving.crt --tls-private-key-file=D:\adapter\serving.key --logtostderr=true --prometheus-url=${prometheus-url} --metrics-relist-interval=70s --v=10 --config=D:\adapter\config.yaml --lister-kubeconfig=D:\adapter\k8s-config.yaml --authorization-kubeconfig=D:\adapter\k8s-config.yaml --authentication-kubeconfig=D:\adapter\k8s-config.yaml
参考:
Kubernetes pod autoscaler using custom metrics
Kubernetes API Aggregation Setup — Nuts & Bolts
Configure the Aggregation Layer
Aggregation
Setup an Extension API Server
OpenShift下的JVM监控