- anaconda和python区别_anaconda与python是什么关系
weixin_39636898
Anaconda是Python的一个发行版,里面内置了很多工具,不用单独安装,因为做了优化也免去了单独安装带来的一些麻烦。Anaconda是一种Python语言的免费增值开源发行版,用于进行大规模数据处理、预测分析,和科学计算,致力于简化包的管理和部署。Anaconda使用软件包管理系统Conda进行包管理。anaconda相比Python增加了那些内容:1、Python(shell):标准CPy
- 1.3 DeepSeek 技术栈的定位与AI赋能场景
北辰alk
人工智能
文章目录**一、DeepSeek技术全景定位****二、核心技术组件解析****三、AI赋能场景深度实践****四、开发赋能体系****五、企业级落地实践****六、开发者生态建设****七、技术演进路线****本章核心价值总结**一、DeepSeek技术全景定位1.1技术栈层级架构应用能力层开发框架层AI核心引擎基础设施层智能对话预测分析图像理解决策优化PythonSDKNode.jsSDKWe
- 四、数据湖应用平台架构
moton2017
大数据治理大数据数据湖数据管理数据架构数据安全大数据管理数据仓库
数据湖应用平台是一个用于存储、处理和分析大容量、用途数据的平台。它旨在以隐蔽、高效率的方式,为企业提供全面的数据管理和应用能力。核心概念数据湖:一个集中各种原始格式数据的存储库,包括格式化数据、半格式化数据和非格式化数据。数据应用:基于数据湖构建的各种数据分析、挖掘和应用服务,例如:数据图表线路商业智能预测分析1.要素组成一个典型的数据湖应用平台架构通常包括以下几个核心组件:数据采集层:从各种数据
- 【DeepSeek零基础入门】从零开始:如何训练自己的AI模型
Evaporator Core
DeepSeek进阶开发与应用#DeepSeek快速入门deepseek应用开发实例deepseek
从零开始:如何训练自己的AI模型在人工智能的世界里,训练一个属于自己的AI模型,就像是在培养一个新生儿。你需要耐心、技巧,以及对数据的深刻理解。今天,我们将一起探索如何从零开始,训练一个AI模型,并通过一个具体的案例来加深理解。第一步:明确目标与选择框架在开始之前,首先要明确你的AI模型需要解决什么问题。是图像识别、自然语言处理,还是预测分析?明确目标后,选择一个合适的机器学习框架至关重要。Ten
- 医疗信息分析与知识图谱系统设计方案
翱翔-蓝天
知识图谱人工智能
医疗信息分析与知识图谱系统设计方案0.系统需求0.1项目背景本系统旨在通过整合医疗机构现有的信息系统数据,结合向量数据库、图数据库和开源AI模型,实现医疗数据的深度分析、疾病预测和医疗知识图谱构建,为医疗决策提供智能化支持。0.2核心需求数据集成与分析:对接现有医疗信息系统(HIS/LIS/PACS/EMR)医疗数据标准化处理多维度统计分析趋势预测分析知识图谱构建:医疗知识抽取实体关系构建知识推理
- 如何利用 AWS 预测分析功能做精准财务规划?
Anna_Tong
aws云计算成本优化云计算最佳实践云财务管理预算
在企业数字化转型的过程中,云计算的使用成本往往成为管理者关注的重点。AWS作为全球领先的云服务提供商,提供了一系列强大的财务管理工具,其中AWS预测分析功能使企业能够更准确地掌控云支出,实现成本优化和精准预算规划。那么,如何利用AWS预测分析功能做出精准的财务规划?一、AWS预测分析功能简介AWS预测分析主要依托AWSCostManagement(成本管理工具)和机器学习算法,帮助企业更清晰地了解
- 第十一章数据仓库和商务智能
joewdc
DAMA-CDGA数据仓库大数据
如有需要题库可私聊我,题库都会了话,cdga基本都能过,但是光刷题库有点囫囵吞枣,不建议。单选题(每题1分,共26道题)1、[单选]数据仓库建设的主要驱动力A:整合数据、减少冗余和提高信息一致性B:运营支持职能、合规需求和商务智能活动C:数据集成、分析应用和决策支持D:客户和消费者的剧增、分析的需求、企业统一管控的需求正确答案:B你的答案:B解析:290页11.1.1第一行,选B,AC与题干无关,
- 神经网络(Neural Network)
ningmengjing_
神经网络深度学习人工智能
引言神经网络,作为人工智能和机器学习领域的核心组成部分,近年来在诸多领域取得了显著的进展。受生物神经系统的启发,神经网络通过模拟人脑神经元的工作机制,能够从大量数据中学习复杂的模式和关系。其强大的非线性建模能力使其在图像识别、自然语言处理、语音识别和预测分析等任务中表现出色。神经网络的基本构建单元是神经元,每个神经元接收多个输入信号,通过加权求和并应用激活函数来生成输出。通过将这些神经元分层组织,
- 开源数据分析工具 RapidMiner
kcarly
大数据治理与分析开源数据分析数据挖掘
RapidMiner是一款功能强大且广泛应用的数据分析工具,其核心功能和特点使其成为数据科学家、商业分析师和预测建模人员的首选工具。以下是对RapidMiner的深度介绍:1.概述RapidMiner是一款开源且全面的端到端数据科学平台,支持从数据准备、机器学习、预测分析到模型部署的整个工作流程。它基于Java开发,具有高度的模块化和可扩展性,能够与多种数据源无缝集成,包括MicrosoftExc
- 【机器学习与数据挖掘实战】案例11:基于灰色预测和SVR的企业所得税预测分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘灰色预测SVR人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- 品牌在营销中利用AI的6种方式
AI科研视界
人工智能搜索引擎
人工智能(AI)已经革新了品牌进行营销的方式,提供了与消费者建立联系、个性化体验和优化活动的新机遇和独特机会。从预测分析到客户服务自动化,最新的AI进展正在重塑营销领域。以下是品牌在其营销策略中利用AI的六种方式,以及实际例子和实施建议。1.个性化推荐AI驱动的推荐引擎分析大量数据,了解消费者偏好和行为,实时提供个性化的内容和产品推荐。这种方法促进了更深入的联系,增强了客户忠诚度,特别是考虑到80
- AI模型:追求全能还是专精?
Lill_bin
杂谈人工智能分布式zookeeper机器学习游戏
AI模型简介人工智能(AI)模型是人工智能系统的核心,它们是经过训练的算法,能够执行特定的任务,如图像识别、自然语言处理、游戏玩法、预测分析等。AI模型的类型很多,可以根据其功能和应用场景进行分类。常见的AI模型类型包括:监督学习模型:这些模型通过训练数据集学习,数据集中包含了输入和对应的输出标签。例子包括决策树、支持向量机(SVM)、神经网络等。无监督学习模型:这些模型处理没有标签的数据,目的是
- 备战2024数学建模国赛(模型十四):马尔科夫模型 优秀案例(二)大型百货商场会员画像描述的马尔科夫模型案例
2024年华数杯数学建模
备战2024数学建模国赛数学建模机器学习人工智能马尔科夫模型备战数学建模国赛2024年数学建模国赛python
目录1.引言2.马尔科夫模型概述3.数据准备3.1数据收集3.2数据预处理4.马尔科夫模型构建4.1定义状态空间4.2计算状态转移概率4.3模型训练与验证5.结果分析与应用6.结论7.附录:完整代码8.扩展分析8.1状态空间的细化8.2状态转移矩阵的可视化8.3长期预测分析9.高级应用9.1个性化营销策略9.2客户流失预测9.3数据驱动的业务决策10.总结与展望1.引言在大型百货商场中,会员画像的
- 让数据说话:人工智能与六西格玛的完美结合
张驰课堂
人工智能六西格玛
当人工智能与六西格玛结合,企业可以充分利用人工智能技术的数据处理、预测分析和智能决策支持能力,实现数据驱动的决策、质量控制和流程优化,从而提高企业的效率和竞争力。下面张驰咨询给大家具体的介绍:1、数据驱动决策六西格玛侧重于数据分析和决策制定,而人工智能可以提供更强大的数据处理和分析能力。通过人工智能技术,可以自动收集和整理大量的数据,并进行有效的数据挖掘和模式识别。这些数据分析结果可以为六西格玛项
- 请介绍一下大数据主要是干什么的?决策支持预测分析用户行为分析个性化服务操作优化风险管理创新与产品开发加拿大卡尔加里大学历史背景学术结构研究和创新校园设施
盛溪的猫猫
感悟大数据英语加拿大
目录请介绍一下大数据主要是干什么的?决策支持预测分析用户行为分析个性化服务操作优化风险管理创新与产品开发加拿大卡尔加里大学历史背景学术结构研究和创新校园设施国际化学生生活大语言模型目前的问题卡尔加里经济地理和气候文化和活动教育交通绿色城市AVL树的旋转单右旋(LL旋转)单左旋(RR旋转)左右旋(LR旋转)右左旋(RL旋转)请介绍一下大数据主要是干什么的?大数据是一个涉及从极其庞大和复杂的数据集中提
- RapidMiner数据挖掘
arrow8071
datamining数据挖掘
RapidMiner数据挖掘入门之一:概要1简介RapidMiner原名Yale,它是用于数据挖掘、机器学习、商业预测分析的开源计算环境。根据KDnuggets在2011年的一次投票显示,从使用率来看该软件比之R语言还要略胜一筹。因为其具备GUI特性,所以很适合于数据挖掘的初学者入门。RapidMiner提供的数据挖掘和机器学习程序包括:数据加载和转换(ETL),数据预处理和可视化,建模,评估和部
- 5.20足球比赛预测分析参考
小向爱看球
大家好我是《小向爱看球》常聊天的地方大家多多支持一下《小向爱看球》跟着小向不迷路,小向从来没套路!以球会友,小向只想多交朋友001凯泽vs德累斯顿凯泽最近九场比赛的战绩为5胜1平3负,进16球失十球。球队近期的比赛进攻端占优势,近六场场均丢球数大于一球。球队呢近期的三场比赛惨遭三连败,上一场比赛更是被科隆维多零封!可能最近的状态呢有点不好,士气低落。德累斯顿最近的9场比赛战绩为1胜5平3负,近十球
- Python基于大数据的电影预测分析系统
2013crazy
Python毕业设计计算机软件项目分享python大数据开发语言电影预测分析python电影分析预测
博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝30W+、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌文末获取源码联系精彩专栏推荐订阅不然下次找不到哟2022-2024年最全的计算机软件毕业设计选题大全:1000个热门选题推荐✅Java项目精品实战案例《100套》Python项目实战《100套》感兴趣的可以先收藏起来,还有大家在毕设
- 漫画sql数据分析
港南四大炮亡
数据分析大数据数据挖掘
第一章数据分析概况1.1数据分析定义数据分析是指根据分析目的,用适当的分析方法及工具,对数据进行处理分析,提取有价值的信息,形成有效结论的过程。1.2数据分析作用数据分析在我们日常工作中主要有三大作用,分别是:现状分析、原因分析、预测分析。1.3数据分析步骤明确分析目的和思路》数据收集》数据处理》分析数据》数据展现》报告撰写数据分析师一般采用sql语句对数据库中的数据进行处理、分析。selectc
- 讲解人工智能在现代科技中的应用和未来发展趋势
做一个AC梦
ai人工智能
人工智能(ArtificialIntelligence,简称AI)在现代科技中的应用十分广泛,涵盖了多个领域。以下是人工智能在现代科技中的一些应用和未来发展趋势:机器学习:机器学习是人工智能的核心技术之一,通过让计算机从数据中学习并自动提取规律和模式,来实现自主决策和预测分析。在现代科技中,机器学习应用广泛,如推荐系统、广告定向投放、自动驾驶等。自然语言处理:自然语言处理(NaturalLangu
- R语言群组变量选择、组惩罚group lasso套索模型预测分析新生儿出生体重风险因素数据和交叉验证、可视化
数据挖掘深度学习人工智能算法
原文链接:http://tecdat.cn/?p=25158原文出处:拓端数据部落公众号本文拟合具有分组惩罚的线性回归、GLM和Cox回归模型的正则化路径。这包括组选择方法,如组lasso套索、组MCP和组SCAD,以及双级选择方法,如组指数lasso、组MCP。还提供了进行交叉验证以及拟合后可视化、总结和预测的实用程序。本文提供了一些数据集的例子;涉及识别与低出生体重有关的风险因素。结果是连续测
- python+大数据学习打卡day1
岁月不静好456
bigdata学习
【大数据从0-1打卡-day1】1、简单了解一些关于大数据的概念数据:数据就是对客观事件进行记录并可以鉴别的符号。他不仅仅是指数字,还可以是有一定意义的字母、文字、符号、语音、文字、图画、视频或者这些元素的结合等。企业数据分析方向:现状分析:离线分析原因分析:实时分析预测分析:机器学习数据分析基本流程:采集、处理、分析、应用大数据:大数据(bigdata),指的是所涉及的资料量规模巨大到无法透过主
- R语言用随机森林模型的酒店收入和产量预测误差分析
数据挖掘深度学习人工智能算法
全文链接:https://tecdat.cn/?p=35162在这篇文章中,我们将探讨基于随机森林模型的酒店收入和产量预测分析。我们将使用4月9日至4月15日的数据作为测试集,评估预测的准确度。我们将分别对单个酒店在三个预订渠道的总收入和总产量进行分析,并使用随机森林模型进行预测。通过对比每家酒店的间夜预测值(或收入)与实际值的结果,以及产量排名前四分之一酒店的平均误差值,我们将得出对酒店收入和产
- R语言LASSO特征选择、决策树CART算法和CHAID算法电商网站购物行为预测分析
数据挖掘深度学习机器学习算法
全文链接:http://tecdat.cn/?p=32275原文出处:拓端数据部落公众号本文通过分析电子商务平台的用户购物行为,帮助客户构建了一个基于决策树模型的用户购物行为预测分析模型。该模型可以帮助企业预测用户的购物意愿、购物频率及购买金额等重要指标,为企业制定更有针对性的营销策略提供参考。数据来源和处理本研究所使用的数据来自某电子商务平台的用户购物历史记录。读取数据head(data)模型构
- 【机器学习笔记】回归算法
住在天上的云
机器学习笔记回归线性回归人工智能
回归算法文章目录回归算法1线性回归2损失函数3多元线性回归4线性回归的相关系数1线性回归回归分析(Regression)回归分析是描述变量间关系的一种统计分析方法例:在线教育场景因变量Y:在线学习课程满意度自变量X:平台交互性、教学资源、课程设计预测性的建模技术,通常用于预测分析,预测的结果多为连续值(也可为离散值,二值)线性回归(Linearregression)因变量和自变量之间是线性关系,就
- OLAP 和数据挖掘的关系
挣扎的菜鸟
数据库
从技术角度看,商务智能的过程是企业的决策人员以企业中的数据仓库为基础,经由数据挖掘工具、联机分析处理工具加上决策规划人员的专业知识,从数据中获得有用的信息和知识,帮助企业获取更多的利润。数据仓库是一个用以更好地支持企业或组织的决策分析处理的的数据集合,它有面向主题、集成、相对稳定、随时间不断变化四个特性,将数据仓库与传统的面向事务处理的数据库区分开来。数据仓库的关键技术包括数据的抽取、清洗、转换、
- 编译原理与技术(三)——语法分析(五)自底向上-LR分析
MCQSLW
算法
一、自顶向下的LL(1)与自底向上的LR(一)LL(1)非递归预测分析器及分析表(二)LR分析器及分析表二、LR分析举个例子。从上面不难看出,LR分析也是由分析表驱动的。那么关键在于构造LR分析表。参考资料:[1]USTC编译原理和技术2023(ustc-compiler-principles.github.io)
- python财政收入预测分析_python 数据分析-- 实战1(收入预测分析)
weixin_39572152
python财政收入预测分析
说明:本文用途只做学习记录:参考书籍:从零开始学Python数据分析与挖掘/刘顺祥著.—北京:清华大学出版社,2018首先看一下刘老师介绍的数据分析和数据挖掘的区别:1.预览数据集,明确分析目的通过Excel工具打开income文件,可发现该数据集一共有32561条样本数据,共有15个数据变量,其中9个离散型变量,6个数值型变量。数据项主要包括:年龄,工作类型,受教育程度,收入等,具体可见下面两个
- 2020-12-22
gxcdbdl
共享充电宝前景预测分析自2017年起,中国共享充电宝行业就开始发展,先后经历过爆发、沉淀的阶段。直到2019年,市场开始慢慢的走向成熟。是什么让共享充电宝行业如此受欢迎呢?(1)智能手机的续航能力不足经调查,63.7%的智能手机使用者都表示手机最大的问题就是电池续航能力不足,现在市面上80%的智能手机在重度使用的情况下使用时间都不超过5个小时,手机经常处于电量不足的状态。(2)越来越多的人选择不携
- 什么是预测分析,其应用行业都有哪些?
CDA·数据分析师
作者|NiccoloMejia编译|CDA数据分析师预测分析可能是金融机构,银行,保险公司和医疗保健公司使用的最常见的AI应用程序之一。这种类型的软件使这些行业的业务领导者可以规划信贷,贷款和患者健康等业务领域中最可能的结果。预测分析软件可以使用历史企业数据根据典型的公司经验对未来的业务事件做出预测。在本文中,我们定义了预测分析,并展示了该领域专家的其他定义。我们介绍了AI和ML如何帮助预测分析用
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1