机器学习框架ML.NET学习笔记【7】人物图片颜值判断

一、概述

 这次要解决的问题是输入一张照片,输出人物的颜值数据。

学习样本来源于华南理工大学发布的SCUT-FBP5500数据集,数据集包括 5500 人,每人按颜值魅力打分,分值在 1 到 5 分之间。其中包括男性、女性、中国人、外国人四个分类。

机器学习框架ML.NET学习笔记【7】人物图片颜值判断_第1张图片

 

SCUT-FBP5500_full.csv文件标记了每个图片人物的颜值打分数据。(我把分值一项乘以了20,变成了满分100分,不影响计算结果)

整个程序处理流程和前一篇图片分类的基本一致,唯一的区别,分类用的是多元分类算法,这次采用的是回归算法。

 

二、源码

 下面是全部代码:

namespace TensorFlow_ImageClassification
{    

    class Program
    {
        //Assets files download from:https://gitee.com/seabluescn/ML_Assets
        static readonly string AssetsFolder = @"D:\StepByStep\Blogs\ML_Assets";
        static readonly string TrainDataFolder = Path.Combine(AssetsFolder, "FaceValueDetection", "SCUT-FBP5500");
        static readonly string TrainTagsPath = Path.Combine(AssetsFolder, "FaceValueDetection", "SCUT-FBP5500_asia_full.csv");
        static readonly string TestDataFolder = Path.Combine(AssetsFolder, "FaceValueDetection", "testimages");
        static readonly string inceptionPb = Path.Combine(AssetsFolder, "TensorFlow", "tensorflow_inception_graph.pb");
        static readonly string imageClassifierZip = Path.Combine(Environment.CurrentDirectory, "MLModel", "imageClassifier.zip");

        //配置用常量
        private struct ImageNetSettings
        {
            public const int imageHeight = 224;
            public const int imageWidth = 224;
            public const float mean = 117;
            public const float scale = 1;
            public const bool channelsLast = true;
        }

        static void Main(string[] args)
        {
            TrainAndSaveModel();
            LoadAndPrediction();

            Console.WriteLine("Hit any key to finish the app");
            Console.ReadKey();
        }

        public static void TrainAndSaveModel()
        {
            MLContext mlContext = new MLContext(seed: 1);

            // STEP 1: 准备数据
            var fulldata = mlContext.Data.LoadFromTextFile(path: TrainTagsPath, separatorChar: ',', hasHeader: true);
            var trainTestData = mlContext.Data.TrainTestSplit(fulldata, testFraction: 0.2);
            var trainData = trainTestData.TrainSet;
            var testData = trainTestData.TestSet;

            // STEP 2:创建学习管道
            var pipeline = mlContext.Transforms.LoadImages(outputColumnName: "input", imageFolder: TrainDataFolder, inputColumnName: nameof(ImageNetData.ImagePath))
                .Append(mlContext.Transforms.ResizeImages(outputColumnName: "input", imageWidth: ImageNetSettings.imageWidth, imageHeight: ImageNetSettings.imageHeight, inputColumnName: "input"))
                .Append(mlContext.Transforms.ExtractPixels(outputColumnName: "input", interleavePixelColors: ImageNetSettings.channelsLast, offsetImage: ImageNetSettings.mean))
                .Append(mlContext.Model.LoadTensorFlowModel(inceptionPb).
                     ScoreTensorFlowModel(outputColumnNames: new[] { "softmax2_pre_activation" }, inputColumnNames: new[] { "input" }, addBatchDimensionInput: true))
                .Append(mlContext.Regression.Trainers.LbfgsPoissonRegression(labelColumnName: "Label", featureColumnName: "softmax2_pre_activation"));


            // STEP 3:通过训练数据调整模型             
            ITransformer model = pipeline.Fit(trainData);          

            // STEP 4:评估模型           
            var predictions = model.Transform(testData); 
            var metrics = mlContext.Regression.Evaluate(predictions, labelColumnName: "Label", scoreColumnName: "Score");
            PrintRegressionMetrics( metrics);          

            //STEP 5:保存模型
            Console.WriteLine("====== Save model to local file =========");
            mlContext.Model.Save(model, trainData.Schema, imageClassifierZip);
        }

        static void LoadAndPrediction()
        {
            MLContext mlContext = new MLContext(seed: 1);

            // Load the model
            ITransformer loadedModel = mlContext.Model.Load(imageClassifierZip, out var modelInputSchema);

            // Make prediction function (input = ImageNetData, output = ImageNetPrediction)
            var predictor = mlContext.Model.CreatePredictionEngine(loadedModel);
            
            DirectoryInfo testdir = new DirectoryInfo(TestDataFolder);
            foreach (var jpgfile in testdir.GetFiles("*.jpg"))
            {
                ImageNetData image = new ImageNetData();
                image.ImagePath = jpgfile.FullName;
                var pred = predictor.Predict(image);

                Console.WriteLine($"Filename:{jpgfile.Name}:\tPredict Result:{pred.FaceValue}");
            }
        }       
    }

    public class ImageNetData
    {
        [LoadColumn(0)]
        public string ImagePath;

        [LoadColumn(1)]
        public float Label;
    }

    public class ImageNetPrediction
    {
        [ColumnName("Score")]
        public float FaceValue;
    }   
}
View Code

  

三、分析

1、数据处理通道

// STEP 2:创建学习管道
var pipeline = mlContext.Transforms.LoadImages(...)
    .Append(mlContext.Transforms.ResizeImages(...)
    .Append(mlContext.Transforms.ExtractPixels(...)
    .Append(mlContext.Model.LoadTensorFlowModel(inceptionPb)
        .ScoreTensorFlowModel(outputColumnNames: new[] { "softmax2_pre_activation" }, inputColumnNames: new[] { "input" }, addBatchDimensionInput: true))    
.Append(mlContext.Regression.Trainers.LbfgsPoissonRegression(labelColumnName: "Label", featureColumnName: "softmax2_pre_activation"));

 LoadImages、ResizeImages、ExtractPixels:上篇文章都已经介绍过了;

ScoreTensorFlowModel方法把图片像素值转换为图片特征数据,并存储在softmax2_pre_activation列,Label列保存的是颜值数据,通过回归算法形成模型,当输入新的特征数据时就可以得出对应的颜值数据。

算法采用的是:L-BFGS Poisson Regression (拟牛顿法泊松回归)

 

2、预测结果

 在网上找了一些大头照,通过程序进行预测,右侧是预测结果:

 

机器学习框架ML.NET学习笔记【7】人物图片颜值判断_第2张图片

 

预测结果虽然和我认为的不完全一致,但总体上可以接受,大方向没什么问题,存在偏差主要有以下几个因素:

1、学习样本的客观性存疑,其打分数据可能是分配给多人打分后汇总的,每个人标准不一致;

2、被检测图片不是很规范,如尺寸、比例、背景、使用美颜软件等;

3、颜值本身就不具备客观性,不存在标准答案,如果我说林心如比如花漂亮,大家肯定都同意,但我如果说古力娜扎比迪丽热巴漂亮,肯定有人不赞成。

 

四、资源获取 

源码下载地址:https://github.com/seabluescn/Study_ML.NET

工程名称:TensorFlow_FaceValueDetection

资源获取:https://gitee.com/seabluescn/ML_Assets (SCUT-FBP5500)

点击查看机器学习框架ML.NET学习笔记系列文章目录

你可能感兴趣的:(机器学习框架ML.NET学习笔记【7】人物图片颜值判断)