一、协程介绍
协程:是单线程下的并发,又称微线程,纤程。英文名Coroutine。一句话说明什么是协程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。
对比操作系统控制线程的切换,用户在单线程内控制协程的切换。
协程自己本身无法实现并发(甚至性能会降低)。
协程+IO切换性能提高。
优点如下:
- 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
- 单线程内就可以实现并发的效果,最大限度地利用cpu
缺点如下:
- 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程
- 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程
总结协程特点:
- 必须在只有一个单线程里实现并发
- 修改共享数据不需加锁
- 用户程序里自己保存多个控制流的上下文栈
- 附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制))
二、greenlet模块
1、安装模块
安装:pip3 install greenlet
2、greenlet实现状态切换
from greenlet import greenlet def eat(name): print('%s eat 1' % name) g2.switch('nick') print('%s eat 2' % name) g2.switch() def play(name): print('%s play 1' % name) g1.switch() print('%s play 2' % name) g1 = greenlet(eat) g2 = greenlet(play) g1.switch('nick') # 可以在第一次switch时传入参数,以后都不需要
单纯的切换(在没有io的情况下或者没有重复开辟内存空间的操作),反而会降低程序的执行速度。
3、效率对比
#顺序执行 import time def f1(): res=1 for i in range(100000000): res+=i def f2(): res=1 for i in range(100000000): res*=i start=time.time() f1() f2() stop=time.time() print('run time is %s' %(stop-start)) #10.985628366470337 #切换 from greenlet import greenlet import time def f1(): res=1 for i in range(100000000): res+=i g2.switch() def f2(): res=1 for i in range(100000000): res*=i g1.switch() start=time.time() g1=greenlet(f1) g2=greenlet(f2) g1.switch() stop=time.time() print('run time is %s' %(stop-start)) # 52.763017892837524
greenlet只是提供了一种比generator更加便捷的切换方式,当切到一个任务执行时如果遇到io,那就原地阻塞,仍然是没有解决遇到IO自动切换来提升效率的问题。
单线程里的这20个任务的代码通常会既有计算操作又有阻塞操作,我们完全可以在执行任务1时遇到阻塞,就利用阻塞的时间去执行任务2...如此,才能提高效率,这就用到了Gevent模块。
三、gevent模块
1、安装
安装:pip3 install gevent
2、Gevent模块介绍
Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet,它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。
1、 用法介绍
g1=gevent.spawn(func,1,,2,3,x=4,y=5):创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的 g2=gevent.spawn(func2) g1.join():等待g1结束 g2.join():等待g2结束 #上述两步合成一步: gevent.joinall([g1,g2])
g1.value
:拿到func1的返回值
2、遇到io主动切换
import geventdef eat(name): print('%s eat 1' %name) gevent.sleep(2) print('%s eat 2' %name) def play(name): print('%s play 1' %name) gevent.sleep(1) print('%s play 2' %name) g1=gevent.spawn(eat,'egon') g2=gevent.spawn(play,name='egon') g1.join() g2.join() # 或者gevent.joinall([g1,g2]) print('主')
上例gevent.sleep(2)
模拟的是gevent可以识别的io阻塞,而time.sleep(2)
或其他的阻塞,gevent是不能直接识别的需要用下面一行代码,打补丁,就可以识别了。
from gevent import monkey;monkey.patch_all()
必须放到被打补丁者的前面,如time,socket模块之前。或者我们干脆记忆成:要用gevent,需要将from gevent import monkey;monkey.patch_all()
放到文件的开头。
from gevent import monkey;monkey.patch_all() import gevent import time
def eat(): print('eat food 1') time.sleep(2) print('eat food 2') def play(): print('play 1') time.sleep(1) print('play 2') g1=gevent.spawn(eat) g2=gevent.spawn(play) gevent.joinall([g1,g2]) print('主')
3、 查看threading.current_thread().getName()
我们可以用threading.current_thread().getName()
来查看每个g1和g2,查看的结果为DummyThread-n,即假线程
from gevent import monkey;monkey.patch_all() import threading import gevent import time
def eat(): print(threading.current_thread().getName()) print('eat food 1') time.sleep(2) print('eat food 2') def play(): print(threading.current_thread().getName()) print('play 1') time.sleep(1) print('play 2') g1=gevent.spawn(eat) g2=gevent.spawn(play) gevent.joinall([g1,g2]) print('主')
3、Gevent之同步与异步
from gevent import spawn,joinall,monkey;monkey.patch_all() import time
def task(pid): """ Some non-deterministic task """ time.sleep(0.5) print('Task %s done' % pid) def synchronous(): # 同步 for i in range(10): task(i) def asynchronous(): # 异步 g_l=[spawn(task,i) for i in range(10)] joinall(g_l) print('DONE') if __name__ == '__main__': print('Synchronous:') synchronous() print('Asynchronous:') asynchronous()
# 上面程序的重要部分是将task函数封装到Greenlet内部线程的gevent.spawn。 # 初始化的greenlet列表存放在数组threads中,此数组被传给gevent.joinall 函数, # 后者阻塞当前流程,并执行所有给定的greenlet任务。执行流程只会在 所有greenlet执行完后才会继续向下走。
4、Gevent之应用
通过gevent实现单线程下的socket并发
注意:from gevent import monkey;monkey.patch_all()
一定要放到导入socket模块之前,否则gevent无法识别socket的阻塞。
1、 服务端
from gevent import monkey;monkey.patch_all() from socket import * import gevent #如果不想用money.patch_all()打补丁,可以用gevent自带的socket # from gevent import socket # s=socket.socket() def server(server_ip,port): s=socket(AF_INET,SOCK_STREAM) s.setsockopt(SOL_SOCKET,SO_REUSEADDR,1) s.bind((server_ip,port)) s.listen(5) while True: conn,addr=s.accept() gevent.spawn(talk,conn,addr) def talk(conn,addr): try: while True: res=conn.recv(1024) print('client %s:%s msg: %s' %(addr[0],addr[1],res)) conn.send(res.upper()) except Exception as e: print(e) finally: conn.close() if __name__ == '__main__': server('127.0.0.1',8080)
2、多线程并发多个客户端
from threading import Thread from socket import * import threading def client(server_ip,port): c=socket(AF_INET,SOCK_STREAM) #套接字对象一定要加到函数内,即局部名称空间内,放在函数外则被所有线程共享,则大家公用一个套接字对象,那么客户端端口永远一样了 c.connect((server_ip,port)) count=0 while True: c.send(('%s say hello %s' %(threading.current_thread().getName(),count)).encode('utf-8')) msg=c.recv(1024) print(msg.decode('utf-8')) count+=1 if __name__ == '__main__': for i in range(500): t=Thread(target=client,args=('127.0.0.1',8080)) t.start()
四、五种IO模型
五种I/O模型包括:阻塞I/O、非阻塞I/O、信号驱动I/O、I/O多路转接、异步I/O。其中,前四个被称为同步I/O。
1、阻塞I/O模型
在linux中,默认情况下所有的socket都是blocking,除非特别指定,几乎所有的I/O接口 ( 包括socket接口 ) 都是阻塞型的。
如果所面临的可能同时出现的上千甚至上万次的客户端请求,“线程池”或“连接池”或许可以缓解部分压力,但是不能解决所有问题。总之,多线程模型可以方便高效的解决小规模的服务请求,但面对大规模的服务请求,多线程模型也会遇到瓶颈,可以用非阻塞接口来尝试解决这个问题。
2、非阻塞I/O模型
在非阻塞式I/O中,用户进程其实是需要不断的主动询问kernel数据准备好了没有。但是非阻塞I/O模型绝不被推荐。
非阻塞,不等待。比如创建socket对某个地址进行connect、获取接收数据recv时默认都会等待(连接成功或接收到数据),才执行后续操作。
如果设置setblocking(False),以上两个过程就不再等待,但是会报BlockingIOError的错误,只要捕获即可。
异步,通知,执行完成之后自动执行回调函数或自动执行某些操作(通知)。比如做爬虫中向某个地址baidu。com发送请求,当请求执行完成之后自执行回调函数。
3、多路复用I/O模型(事件驱动)
基于事件循环的异步非阻塞框架:如Twisted框架,scrapy框架(单线程完成并发)。
检测多个socket是否已经发生变化(是否已经连接成功/是否已经获取数据)(可读/可写)IO多路复用作用?
检测多个socket是否发生变化。
操作系统检测socket是否发生变化,有三种模式:
- select:最多1024个socket;循环去检测。
- poll:不限制监听socket个数;循环去检测(水平触发)。
- epoll:不限制监听socket个数;回调方式(边缘触发)。
Python模块:
- select.select
- select.epoll
基于IO多路复用+socket非阻塞#,实现并发请求(一个线程100个请求)
import socket # 创建socket client = socket.socket() # 将原来阻塞的位置变成非阻塞(报错) client.setblocking(False) # 百度创建连接: 阻塞 try: # 执行了但报错了 client.connect(('www.baidu.com',80)) except BlockingIOError as e: pass # 检测到已经连接成功 # 问百度我要什么? client.sendall(b'GET /s?wd=alex HTTP/1.0\r\nhost:www.baidu.com\r\n\r\n') # 我等着接收百度给我的回复 chunk_list = [] while True: # 将原来阻塞的位置变成非阻塞(报错) chunk = client.recv(8096) if not chunk: break chunk_list.append(chunk) body = b''.join(chunk_list) print(body.decode('utf-8'))
4、信号驱动I/O模型(了解)
5、异步I/O模型
上五个模型的阻塞程度由低到高为:阻塞I/O>非阻塞I/O>多路转接I/O>信号驱动I/O>异步I/O,因此他们的效率是由低到高的。