- Python(PyTorch)和MATLAB及Rust和C++结构相似度指数测量导图
亚图跨际
Python交叉知识算法量化检查图像压缩质量低分辨率多光谱峰值信噪比端到端优化图像压缩手术机器人三维实景实时可微分渲染重建三维可视化
要点量化检查图像压缩质量低分辨率多光谱和高分辨率图像实现超分辨率分析图像质量图像索引/多尺度结构相似度指数和光谱角映射器及视觉信息保真度多种指标峰值信噪比和结构相似度指数测量结构相似性图像分类PNG和JPEG图像相似性近似算法图像压缩,视频压缩、端到端优化图像压缩、神经图像压缩、GPU变速图像压缩手术机器人深度估计算法重建三维可视化推理图像超分辨率算法模型三维实景实时可微分渲染算法MATLAB结构
- ESRGAN——老旧照片、视频帧的修复和增强,提高图像的分辨率
爱研究的小牛
AIGC——图像AIGC—视频AIGC人工智能深度学习音视频自动化
ESRGAN(EnhancedSuper-ResolutionGAN):用于提高图像的分辨率,将低质量图像升级为高分辨率版本,常用于老旧照片、视频帧的修复和增强。一、ESRGAN介绍1.1背景超分辨率问题是计算机视觉中的一个重要研究领域,其目标是通过增加像素数量来提高图像的分辨率,恢复出更加细腻的图像。传统的算法(如双三次插值)通常导致放大后的图像模糊、不自然。而深度学习特别是**生成对抗网络(G
- stable diffusion和GAN网络的区别,优点缺点是什么
爱好很多的算法工程师
SD大模型AIGC笔记
稳定扩散(stablediffusion)和生成对抗网络(GAN)是两种不同的深度学习方法。稳定扩散是一种无监督学习方法,用于图像超分辨率重建。它基于扩散过程模型,通过在不同的时间步骤中对图像进行重建来增加分辨率。该方法能够有效地增加图像的细节,并产生更高质量的图像。其优点包括:无监督学习:稳定扩散不需要使用任何带标签的训练数据,因此可以用于无监督任务。高分辨率重建:稳定扩散能够通过迭代过程逐渐增
- (condition instance batchnorm)A LEARNED REPRESENTATION FOR ARTISTIC STYLE
水球喵
分享一个不错的对batchnorm的解释https://blog.csdn.net/aichipmunk/article/details/54234646.作者提到:BatchNorm会忽略图像像素(或者特征)之间的绝对差异(因为均值归零,方差归一),instancenorm也是一样的,他们只考虑相对差异,所以在不需要绝对差异的任务中(比如分类、风格),有锦上添花的效果。而对于图像超分辨率这种需要
- Stable Diffusion系列(六):原理剖析——从文字到图片的神奇魔法(潜空间篇)
羊城迷鹿
多模态模型stablediffusionlatent潜空间论文
文章目录LDM概述原理模型架构自编码器模型扩散模型条件引导模型图像生成过程实验结果指标定义IS(越大越好)FID(越小越好)训练成本与采样质量分析不带条件的图片生成基于文本的图片生成基于语义框的图片生成基于语义图的图片生成超分辨率图像生成图像重绘其他文生图模型DALL-EImagen在上一章,我们了解了扩散模型的基本原理,但它离实现StableDiffusion的文生图或图生图功能显然还有一段距离
- ESRGAN:基于GAN的增强超分辨率方法(附代码解析)
PaperWeekly
作者丨左育莘学校丨西安电子科技大学研究方向丨计算机视觉之前看的文章里有提到GAN在图像修复时更容易得到符合视觉上效果更好的图像,所以也是看了一些结合GAN的图像修复工作。ESRGAN:EnhancedSuper-ResolutionGenerativeAdversarialNetworks发表于ECCV2018的Workshops,作者在SRGAN的基础上进行了改进,包括改进网络的结构、判决器的判
- [超分辨率重建]ESRGAN算法训练自己的数据集过程
Cr_南猫
超分辨率重建超分辨率重建人工智能深度学习
一、下载数据集及项目包1.数据集1.1文件夹框架的介绍,如下图所示:主要有train和val,分别有高清(HR)和低清(LR)的图像。1.2原图先通过分割尺寸的脚本先将数据集图片处理成两个相同的图像组(HR和LR)。如训练x4的ESRGAN模型,那么我们需要将HR的图像尺寸与LR的图像尺寸比例是4:1。在我的训练中,我将HR的图像尺寸分割成了480x480,LR的图像分割成了120x120。如下图
- 第十八篇【传奇开心果短博文系列】Python的OpenCV库技术点案例示例:图像修复和恢复
传奇开心果编程
Python库OpenCV技术点案例示例短博文pythonopencv计算机视觉人工智能
传奇开心果短博文系列系列短博文目录Python的OpenCV库技术点案例示例系列短博文目录前言一、常用的图像修复与恢复技术二、插值方法示例代码三、基于纹理合成的方法示例代码四、基于边缘保持的方法示例代码五、基于图像修复模型的方法示例代码六、基于深度学习的方法示例代码七、基于结构化边缘的方法示例代码八、基于多帧图像的方法示例代码九、基于超分辨率的方法示例代码十、cv2.inpaint()函数修复图像
- 【深度学习】实验7实验结果,图像超分辨
X.AI666
深度学习深度学习人工智能
代码和报告均为本人自己实现(实验满分),只展示主要任务实验结果,如果需要详细的实验报告或者代码可以私聊博主,接实验技术指导1对1实验要求布置请看http://t.csdnimg.cn/jCsv6Model实现说明代码实现了一个基于生成对抗网络(SRGAN)的图像超分辨率模型。总体来说,SRGAN由两个主要组件组成:生成器(Generator)和判别器(Discriminator),它们相互对抗并共
- YOLOv8改进 | 检测头篇 | 独创RFAHead检测头超分辨率重构检测头(适用Pose、分割、目标检测)
Snu77
YOLOv8有效涨点专栏YOLO目标检测人工智能深度学习计算机视觉pythonPytorch
一、本文介绍本文给大家带来的改进机制是RFAHead,该检测头为我独家全网首发,本文主要利用将空间注意力机制与卷积操作相结合的卷积RFAConv来优化检测头,其核心在于优化卷积核的工作方式,特别是在处理感受野内的空间特征时。RFAConv主要的优点就是增加模型的特征提取能力,这对于对于那些数据集中有困难识别的样本来说是非常有效的解决方法,同时本文的检测头结构为我本人独家提出,全网仅此一份,结构非常
- ESRGAN:基于GAN的增强超分辨率方法(附代码解析)
无止境x
SuperResolution(超分辨)ESRGAN
之前看的文章里有提到GAN在图像修复时更容易得到符合视觉上效果更好的图像,所以也是看了一些结合GAN的图像修复工作。ESRGAN:EnhancedSuper-ResolutionGenerativeAdversarialNetworks发表于ECCV2018的Workshops,作者在SRGAN的基础上进行了改进,包括改进网络的结构、判决器的判决形式,以及更换了一个用于计算感知域损失的预训练网络。
- 一种通过增强的面部边界实现精确面部表示的多级人脸超分辨率
qq_43314576
人工智能机器学习深度学习
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录摘要Abstract文献阅读:一种通过增强的面部边界实现精确面部表示的多级人脸超分辨率二、使用步骤1、研究背景2、方法提出3、相关方法3.1、FSR网络结构3.2、多阶段FSR网络结构4、实验工作5、方法比较LSTM代码学习2.1、什么是LSTM2.2、LSTM的处理过程2.3、LSTM代码分析总结摘要本周主要阅读了2020C
- (2021|NIPS,VQ-VAE,精度瓶颈松弛,三明治层归一化,CapLoss)CogView:通过转换器掌握文本到图像的生成
EDPJ
论文笔记transformer深度学习人工智能
CogView:MasteringText-to-ImageGenerationviaTransformers公众号:EDPJ(添加VX:CV_EDPJ或直接进Q交流群:922230617获取资料)目录0.摘要1.简介2.方法2.1理论2.2标记化2.3自回归Transformer2.4训练的稳定性3.微调3.1超分辨率3.2图像标题和自我重新排名3.3风格学习3.4工业时尚设计4.实验结果4.1
- 论文阅读《SGNet: Structure Guided Network via Gradient-Frequency Awareness for Depth Map Super-Resolutio》
CV科研随想录
CV顶会(刊)论文阅读论文阅读
论文地址:https://arxiv.org/pdf/2312.05799v1.pdf源码地址:https://github.com/yanzq95/SGNet概述 深度图的图像引导超分辨率在各个领域有着广泛的应用。但是,复杂的成像环境会导致深度图的结构边缘变得模糊。如图2所示,从梯度图可以看出,它能够很好地表现出图像的结构信息。从频谱图可以看出,高分辨率的深度图和RGB图像都包含了丰富的高频和
- 文本生成高清、连贯视频,谷歌推出时空扩散模型
RPA中国
音视频人工智能
谷歌研究人员推出了创新性文本生成视频模型——Lumiere。与传统模型不同的是,Lumiere采用了一种时空扩散(Space-time)U-Net架构,可以在单次推理中生成整个视频的所有时间段,能明显增强生成视频的动作连贯性,并大幅度提升时间的一致性。此外,Lumiere为了解决空间超分辨率级联模块,在整个视频的内存需求过大的难题,使用了Multidiffusion方法,同时可以对生成的视频质量、
- HiNet阅读笔记
小杨小杨1
#全监督计算机视觉人工智能深度学习
HINet:HalfInstanceNormalizationNetworkforImageRestoration摘要提出了一种新的block:半实例归一化块(HINblock)图像恢复任务sota一些效果展示引言批处理归一化不能提高超分辨率网络的性能批归一化消除了网络的范围灵活性图像恢复任务通常使用小的图像patch和小的mini-batchsize来训练网络,这导致BN的统计不稳定。实例标准化
- ICCV 2023 超分辨率(super-resolution)方向上接收论文总结
yyywxk
ICCV2023官网链接:https://iccv2023.thecvf.com/会议时间:2023年10月2日至6日,法国巴黎(Paris)。ICCV2023统计数据:收录2160篇。现将超分辨率方向上接收的论文汇总如下,遗漏之处还请大家斧正。图像超分SRFormer:PermutedSelf-AttentionforSingleImageSuper-ResolutionPaper:http:/
- torch.utils.data.Dataset
syugyou
pytorchpython
文章目录torch.utils.data.Dataset结构示例超分辨率数据集bsd_300__getitem__()transformimagenet22k数据集__getitem__()RelatedLinkstorch.utils.data.Dataset表示一个数据集的抽象类,Map-style的数据集都应该是它的子类,并且重写__getitem__(),支持给定key值获取数据,重写__
- 紫光展锐M6780丨超分辨率技术——画质重构还原经典
紫光展锐官方
重构人工智能
上一期,我们揭秘了让画质更加炫彩的AI-PQ技术。面对分辨率较低的老电影,光有高饱和度的色彩是不够的,如何能够提高视频影像的分辨率,使画质更加清晰,实现老片新看?本期带大家揭晓紫光展锐首颗AI+8K超高清智能显示芯片平台M6780的第二项隐藏技能——AI-SR超分辨率技术。在图像、视频的显示过程中,视频源的输入尺寸取决于视频资源的实际尺寸,如果视频资源较为老旧,其分辨率普遍低于播放设备的显示分辨率
- 超分之SRGAN
深度学习炼丹师-CXD
超分SR计算机视觉人工智能深度学习超分辨率重建论文笔记
Photo-RealisticSingleImageSuper-ResolutionUsingaGenerativeAdversarialNetwork使用生成对抗网络的逼真单图像超分辨率一作:ChristianLedig是Twitter2017年的一篇论文。超分之SRGAN代码实现文章目录0.摘要1.引言1.1相关工作1.1.1介绍了SR技术的发展历程1.1.2介绍了SR技术中卷积神经网络的设计
- 超分之ESRGAN
深度学习炼丹师-CXD
超分SR深度学习计算机视觉超分辨率重建pytorch
Esrgan:增强型超分辨率生成对抗网络。Esrgan:Enhancedsuper-resolutiongenerativeadversarialnetworks.In:ECCVW.(2018)XintaoWang,KeYu,ShixiangWu,JinjinGu,YihaoLiu,ChaoDong,YuQiao,andChenChangeLoy.文章目录摘要一、引言二、相关工作三、Methods
- 卷积神经网络(CNN)
Array902
cnn人工智能神经网络
卷积神经网络主要就是应用于计算机视觉(CV)当中!可以做啥?检测任务:检测追踪分类与检索:分类看图像是啥,检索比如说淘宝里面识别一张图片得到类似商品超分辨率重构医学任务等无人驾驶人脸识别传统神经网络与卷积神经网络的区别卷积神经网络拿到一张图像直接进行处理,不需要将图像中的点拉成一维向量;整体架构卷积层:提取特征池化层:压缩特征卷积h*w*c上面的一块小区域的样本点矩阵:小区域处的权重矩阵:图像颜色
- ECCV 2022 超分辨率(super-resolution)方向上接收论文总结(持续更新)
yyywxk
ECCV2022除了著名的CVPR、ICCV,ECCV(欧洲计算机视觉国际会议)也是计算机视觉三大国际顶级会议之一,每两年召开一次。本届ECCV2022将在10月23日-27日的以色列特拉维夫(Tel-Aviv)举行,采取线下和线上混合形式召开[1]。而本届会议论文录用率不足20%。现将超分辨率方向上接收的论文汇总如下,遗漏之处还请大家斧正。图像超分CADyQ:Content-AwareDynam
- 基于深度学习的老黑白视频修复
OverlordDuke
深度学习GAN深度学习音视频人工智能视频修复
基于深度学习的老黑白视频修复PaddleGAN实现老北京黑白视频修复项目背景与意义安装PaddleGAN1.1准备工作1.2下载PaddleGAN代码1.3安装依赖导入依赖包2.1导入相关库2.2定义display函数展示旧影像3.1读取视频帧3.2获得帧率并显示视频修复4.1使用DAIN模型补帧4.2使用DeOldify模型进行上色4.3使用PPMSVSR模型实现视频的超分辨率展示结果Paddl
- Resemble Enhance音频失真损坏修复AI工具:一个开源语音超分辨率AI模型
喜好儿aigc
人工智能aigc科技机器人ai
ResembleEnhance是一款强大的音频处理工具,可以将嘈杂的录音转化为清晰而有力的声音,为用户提供更优质的听觉体验。这个工具不仅可以有效去除录音中的各种噪声和杂音,还能够恢复音频失真并扩展音频带宽,使原本的声音听起来更加清晰和自然。详细介绍:ResembleEnhance:OpenSourceSpeechSuperResolutionModelGitHub:https://github.c
- ESRGAN - Enhanced Super-Resolution Generative Adversarial Networks论文翻译——中文版
SnailTyan
文章作者:Tyan博客:noahsnail.com|CSDN|声明:作者翻译论文仅为学习,如有侵权请联系作者删除博文,谢谢!翻译论文汇总:https://github.com/SnailTyan/deep-learning-papers-translationESRGAN:EnhancedSuper-ResolutionGenerativeAdversarialNetworks摘要超分辨率生成对抗
- 【扩散模型】11、Stable Diffusion | 使用 Diffusers 库来看看 Stable Diffusion 的结构
呆呆的猫
stablediffusion
文章目录一、什么是StableDiffusion二、Diffusers库三、微调、引导、条件生成3.1微调3.2引导3.3条件生成四、StableDiffusion4.1以文本为条件生成4.2无分类器的引导4.3其它类型的条件生成:超分辨率、图像修补、深度图到图像的转换4.4使用DreamBooth微调五、使用Diffusers库来窥探StableDiffusion内部5.1StableDiffu
- 基于DL的人脸超分辨率(FSR)任务综述
多少学一点吧
FSR深度学习计算机视觉神经网络
一、任务描述从低分辨率的人脸图像中生成高分辨率的人脸图像。二、数据来源利用已有的高分辨率(HR)人脸图像,采用一些方法降低图像的分辨率,得到对应的低分辨率(LR)人脸图像。LR图像用于网络的训练,HR图像用于监督,网络生成的图片记为SR(superresolution),损失函数可以基于评估HR图像和SR图像之间的差异构建。三、常见的评价指标和损失函数1、评价指标:(1)PSNR(PeakSign
- 目标检测YOLO实战应用案例100讲-基于图像增强的鸟类目标检测(续)
林聪木
目标检测YOLO深度学习
目录SRGAN网络模型改进研究3.1SRGAN超分辨率模型3.1.1SRGAN网络结构3.1.2SRGAN的损失函数
- [C#]使用OpenCvSharp实现二维码图像增强超分辨率
FL1623863129
C#c#开发语言
【官方框架地址】github.com/shimat/opencvsharp【算法介绍】借助于opencv自带sr.prototxt和sr.caffemodel实现对二维码图像增强【效果展示】【实现部分代码】usingSystem;usingSystem.Collections.Generic;usingSystem.ComponentModel;usingSystem.Data;usingSyst
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro