- 对话式数据分析与Text2SQL Agent产品可行性分析思考
Text2SQLAgent产品可行性分析报告版本BG:基于一些手撸Text2SQL的产品MVP,进一步进行商业化思考。目标输出包含市场、技术、开发、商业模式及护城河策略的完整可行性分析报告,支撑产品决策。✅市场调研与竞品分析研究内容:市场现状与趋势全球Text2SQL技术应用场景(金融、零售、医疗等)2023-2028年复合增长率(CAGR)及驱动因素(如低代码、AI民主化)竞品分析矩阵竞品类型代
- Delta视觉定位系统
东城十三
vuca数码相机计算机视觉目标跟踪算法人工智能机器学习
Delta视觉定位系统软件应用背景Delta机器人以并联构型实现“轻量、高速、高精度”三位一体,成为高速分拣、精密装配、食品包装等领域的佼佼者。然而,其卓越的物理性能要转化为实际作业中的高精度定位取放能力,视觉定位系统是不可或缺的“眼睛”和“导航员”。尤其在面对高速运动目标或随机摆放(无序)物体的复杂场景时,视觉系统是实现高效、精准作业的核心技术保障。通过机器视觉实时识别目标物体的位置与姿态,引导
- 选择Alluxio来解决AI模型训练场景数据访问的五大理由
Alluxio
人工智能AI分布式大数据语言模型
在AI模型训练尤其是大模型领域,存储系统的性能和稳定性直接决定了模型训练、推理、部署任务的效率和成本。随着全球AI行业的爆发带来的数据规模的快速增长,如何高效管理和利用这些数据成为AI模型训练中的一大挑战。AI模型训练场景面临的五大难题1.数据读写性能不足在AI模型训练与推理过程中,数据的高效读写是确保计算效率的关键。然而,随着数据集的急剧增长,存储系统往往无法满足对高速数据传输的需求,导致读写性
- 盲法在临床试验中的应用与挑战
qq_34062333
临床试验统计学
一、盲法分级与科学价值1.1开放标签1.1.1受盲对象无隐藏。1.1.2适用场景外科手术、器械试验等无法伪装的操作。1.1.3偏倚控制目标仅客观终点(生存率、实验室指标)。1.2单盲1.2.1受盲对象患者。1.2.2适用场景患者报告结局(PRO)为主的试验(如抑郁症)。1.2.3偏倚控制目标避免患者期望效应影响主观症状报告。1.3双盲1.3.1受盲对象患者+研究者+评估员。1.3.2适用场景药物试
- 分布式训练架构解析
一、分布式训练的问题根源与需求驱动在深度学习领域,模型与数据规模呈指数级增长趋势,传统单机训练模式已难以满足日益复杂的业务需求,分布式训练技术应运而生,其核心驱动力源于以下三大关键困境:1.1算力瓶颈与训练效率危机单GPU设备的计算能力存在物理上限。以NVIDIAA100为例,其单卡FP32算力约为19.5TFLOPS,面对GPT-4这样拥有1.8万亿参数的超大型模型,若采用单机单卡训练,仅完成一
- AI教学应用 作业多元化和教师批改多样化
蹦跑的蜗牛
AI人工智能ai
AI教学应用作业多元化和教师批改多样化目标是解决「作业形式多样化+教师批改压力大+教学反馈个性化不足」的问题一、需求大学生的作业和高中完全不一样,比如:作业类型多:可能是论文/实验报告(文字类)、Python代码(编程类)、电路仿真图(图片类)、小组调研视频(视频类)、甚至社会调查的问卷数据(表格类)。教师批改难:比如一篇5000字的论文,老师要检查逻辑、查重、给修改建议;一份代码作业要跑通测试、
- 【AI大模型】26、算力受限下的模型工程:从LoRA到弹性智能系统的优化实践
无心水
AI大模型人工智能搜索引擎LoRA大语言模型微调模型压缩知识蒸馏量化技术
引言:算力瓶颈与模型工程的突围之路在人工智能领域,大语言模型的发展正呈现出参数规模爆炸式增长的趋势。从GPT-3的1750亿参数到PaLM的5400亿参数,模型能力的提升往往伴随着对算力资源的极度渴求。然而,对于大多数企业和研究者而言,动辄数百GB的显存需求、数十万块GPU的训练集群显然是难以企及的"算力鸿沟"。当面对"无米之炊"的困境时,模型工程技术成为突破算力瓶颈的核心路径——通过算法创新而非
- 不懂的还在争论AI,懂行的已用Python+DeepSeek变现!逆袭机会就在AI应用层
渡难繁辰
python开发人工智能拥抱AI人工智能pythonai
最近总有种错觉:AI时代轰轰烈烈,普通人却只能当看客?大模型训练动辄千万美金,算法高深莫测,似乎离我们太远。别急,AI真正的革命性力量,正从神秘实验室涌向普通人的键盘——它的名字叫“AI应用层”。而拿到这张船票的钥匙,就是你早该学起来的:Python。当质疑者还在争论“AI能否取代人类”,行动派已用DeepSeek+LangChain开发智能应用月入五位数!巨头烧钱搭台,我们轻量唱戏!科技大佬砸重
- MySQL(106)如何设计分片键?
辞暮尔尔-烟火年年
MySQLmysql数据库
设计分片键(ShardingKey)是数据库分片的核心,它决定了将数据分配到不同分片的方式。一个好的分片键应该能够均衡地分布数据,避免热点问题,提高查询性能。下面将详细介绍如何设计分片键,并结合代码进行说明。1.选择分片键的考虑因素唯一性和可变性:分片键应该具有唯一性或较高的离散度,避免集中在某些分片。查询模式:根据查询模式选择合适的分片键,以优化查询性能。数据增长:考虑数据量的增长,分片键应能支
- 【day51】复习日
daomingwu017
Python打卡训练营内容python
内容来自@浙大疏锦行python打卡训练营@浙大疏锦行作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高
- 大模型商用格局雏形初现:Tokens用量决高下,火山引擎问鼎2024
QbitAl
火山引擎人工智能
明敏发自凹非寺量子位|公众号QbitAI大模型应用落地元年,谁家业务更值得关注?Tokens使用量,正在成为最关键的衡量指标。量子位结合市场数据观察,2024下半年国内大模型商用落地日均Tokens消耗量翻了近10倍,从1000亿级规模到10000亿规模,只用了6个月,月复合增长率达到45%。其中,10-12月增长进一步提速。其中,只有1家云厂商商用Tokens日均消耗量的月均复合增长率超过60%
- DAY 42 Grad-CAM与Hook函数
@浙大疏锦行https://blog.csdn.net/weixin_45655710知识点回顾回调函数lambda函数hook函数的模块钩子和张量钩子Grad-CAM的示例作业:理解下今天的代码即可importtorchimporttorch.nnasnnimporttorch.nn.functionalasFimporttorchvisionimporttorchvision.transfor
- 《网络攻防技术》《数据分析与挖掘》《网络体系结构与安全防护》这三个研究领域就业如何?
扣棣编程
其他网络数据分析安全
这几个研究领域都是当前信息技术领域的热点方向,就业前景总体来说都非常不错,但各有侧重和特点。我来帮你详细分析一下:1.网络攻防技术就业前景:非常火热且持续增长。核心方向:渗透测试、漏洞挖掘与分析、恶意软件分析、入侵检测/防御、应急响应、威胁情报、安全审计、红蓝对抗等。市场需求:极高。数字化转型深入、网络攻击日益频繁和复杂(勒索软件、APT攻击、供应链攻击等)、数据安全与隐私保护法规(如GDPR、中
- ACM ICPC 2017 Warmup Contest 7(CTU Open Contest 2016)
Owen_Q
水题搜索数组stlacm
ccsp与区域赛都越来越近了,模拟与区域赛题并进,还有一堆作业,有点累,想玩耍,感觉自己有点迷失,算了,还是就这样吧,努力向前练习赛7,打两个签到题走人,继续刷csp去B.HotAirBallooning思路:统计不同人用过的气球的方案数,又是个去重问题,又想往set上放,后来发现气球数很少,完全可以数组统计,而气球总组合有限,虽然不大,但强搜可能会感觉tle,加个状压好了,感觉现在自己特别喜欢做
- 创客匠人老蒋:创始人 IP 打造的五大核心命题与破局之道
创小匠
tcp/ip网络协议网络
在知识付费行业进入深水区的当下,创始人IP如何从“流量符号”进化为“商业引擎”?创客匠人CEO老蒋在“全球创始人IP领袖高峰论坛”中,围绕“IP、趋势、战略、创新、增长”五大关键词,揭示了IP打造的系统性方法论。一、认知破局:IP是商业战略而非营销手段老蒋以美特斯邦威周成建直播为例,指出创始人IP的本质是“企业战略的人格化表达”。数据显示,IP化创始人的企业估值平均比非IP化企业高30%-50%,
- 创客匠人联盟生态:重构家庭教育知识变现的底层逻辑
创小匠
重构人工智能大数据
在《家庭教育促进法》推动行业刚需化的背景下,单一个体IP的增长天花板日益明显。创客匠人提出的“联盟生态思维”,正推动家庭教育行业从“单打独斗”转向“矩阵作战”,其核心在于通过工具整合资源,将“同行竞争”转化为“生态共赢”。一、行业趋势:从个体IP到联盟矩阵的必然跃迁数据显示,2024年家庭教育新增服务超10万项,同质化竞争导致获客成本上涨40%。创客匠人联盟模型的破局点在于:当30位区域IP组成联
- DAY 10 机器学习建模与评估
心落薄荷糖
Python训练营机器学习人工智能
知识点:1.数据集的划分2.机器学习模型建模的三行代码3.机器学习模型分类问题的评估今日代码比较多,但是难度不大,仔细看看示例代码,好好理解下这几个评估指标。作业:尝试对心脏病数据集采用机器学习模型建模和评估#一、导入库importpandasaspdimportpandasaspd#用于数据处理和分析,可处理表格数据。importnumpyasnp#用于数值计算,提供了高效的数组操作。impor
- 远程光伏电站网络解决方案:SD-WAN与传统方式的双剑合璧
北极光SD-WAN组网
网络
在“双碳”目标驱动下,光伏行业迎来了爆发式增长。然而,光伏电站由于数量多、分布广且位置偏远,其远程运维管理面临巨大挑战。传统的网络接入方式(如VPN和专线)虽然成熟稳定,但在成本、灵活性和扩展性上存在明显不足。而近年来兴起的**SD-WAN(软件定义广域网)**技术,凭借其智能化、敏捷性和成本优势,为光伏行业提供了更为灵活高效的网络解决方案。但从实际场景来看,完全“抛弃”传统方式并不可取,而是需要
- 探秘阿里云Tair KVCache:大模型推理的加速引擎
云资源服务商
阿里云云计算人工智能
一、引言近年来,人工智能领域发展迅猛,大语言模型(LLM)不断取得突破,其应用场景也日益广泛。从智能客服到内容生成,从智能写作到智能翻译,大语言模型正在深刻地改变着我们的生活和工作方式。随着模型规模的不断扩大和推理需求的日益增长,大模型推理过程中的显存瓶颈问题逐渐凸显,成为制约其发展和应用的关键因素。在大模型推理中,KVCache技术作为一种优化手段,通过缓存历史Token的Key/Value向量
- 读芯片信息出错3_简单说说汽车MCU有关security信息安全功能
weixin_39617685
读芯片信息出错3
汽车生态系统正在快速发展,新的连接技术将推动汽车进入物联网领域,其好处与威胁并存。随着每辆车的电子控制单元(ECU)的数量增加,以及汽车与互联网,用户以及彼此之间的连接,其复杂性和攻击面呈指数级增长。空中远程诊断和软件更新,紧急呼叫,互联网服务,车载支付,移动应用以及信息娱乐和交通信息等新功能都增加了车辆的攻击面。汽车电子网络安全标准化白皮书(2018)中,通过对近年来出现的各类汽车安全事件的搜集
- BTC官网关注巨鲸12亿美元平仓,XBIT去中心化交易平台表现稳定
在全球加密货币市场波动加剧的背景下,2025年5月25日传出重磅消息。据今日最新国际报道,知名巨鲸JamesWynn完全平仓价值12亿美元的BTC多头仓位,整体盈利约845万美元,此举引发市场广泛关注。与此同时,收益型稳定币市场迎来爆发式增长,去中心化交易所平台在市场动荡中展现出卓越的稳定性和抗风险能力。巨鲸大举平仓,市场信号值得关注今日中午,币界网监控显示,加密货币市场出现重要变化。知名巨鲸投资
- 2019-2020年线上睡眠市场深度分析报告
我就是夏迎春
本文还有配套的精品资源,点击获取简介:本报告全面分析了2019至2020年间中国线上消费者购买睡眠相关产品的行为和趋势。报告内容涉及市场概况、消费偏好、消费者行为、地域差异及未来展望,详细解读了消费者对多种睡眠产品的偏好及线上市场的发展。京东平台的数据为研究提供了丰富的实证,包括市场增长、产品多样化、高端产品需求上升、科技产品的发展、购买时段、年龄分布、决策因素以及地域差异等。报告指出,健康意识和
- 手机控制载货汽车一键启动无钥匙进入广泛应用
移动管家载货汽车一键启动无钥匙进入手机控车系统,该系统广泛应用于物流运输、工程作业等货车场景,为车主提供了高效、便捷的启动和熄火解决方案,体现了科技进步对物流行业的积极影响核心功能:简化启动流程,提高便捷性与安全性。无钥匙进入:车主携带智能钥匙靠近车辆,车门自动解锁并解除防盗;离开时自动上锁防盗。一键启动:踩下刹车,按下一键启动按钮即可启动或熄火车辆,替代传统钥匙。智能控制:
- PCDN如何提升网络流量的传输效率
数据库
PCDN如何提升网络流量的传输效率在当今数字化时代,网络流量的快速增长对传统的CDN(内容分发网络)提出了更高要求。PCDN(P2PCDN)作为一种创新的内容分发技术,通过利用边缘节点的带宽资源,显著提升了宽带流量的传输效率,为用户带来更流畅的网络体验。分布式节点优化宽带流量传输传统CDN依赖中心化服务器分发内容,当用户请求激增时,容易导致服务器负载过高,影响宽带流量的传输速度。PCDN则采用分布
- 疲劳检测与行为分析:工厂智能化实践
智驱力人工智能
安全智慧城市行为识别人员属性识别疲劳检测抽烟检测徘徊检测
视觉分析算法赋能工厂疲劳与安全管理一、背景与需求在制造业中,疲劳作业是导致安全事故和效率下降的核心因素之一。传统人工巡检存在覆盖面不足、响应滞后等问题,而基于视觉分析的智能监控系统通过多算法协同,可实现全天候、高精度的疲劳检测与行为管理。本文围绕疲劳检测算法、人员计数算法、抽烟检测算法及徘徊检测算法,探讨其在工厂场景中的技术实现与应用价值。二、技术实现疲劳检测算法原理:基于PERCLOS(眼睑闭合
- 为什么90%企业的AI数据分析都失败了?奥威BI给出破局方案
qq_43696218
人工智能数据分析数据挖掘
一、引言:AI数据分析在数字化转型中的核心地位在当今企业全面数字化转型的背景下,AI数据分析已成为解锁业务增长潜力的关键钥匙。然而,市场上众多AI数据分析产品常陷入“伪需求场景”,看似前沿却难以真正落地。本文将深入探讨奥威BI如何通过其AI数据分析能力,突破伪需求,实现数据价值的最大化。二、AI数据分析:伪需求场景的挑战伪需求场景的定义与表现AI数据分析领域的伪需求场景,指的是那些表面创新实则难
- 初中学习机推荐:从功能、内容到用户体验的深度解析
资讯分享周
ux人工智能
在教育信息化持续深化的背景下,初中阶段的学习辅助设备正逐步成为家长和学生关注的重点。尤其在“双减”政策推动下,传统补习班的作用被削弱,越来越多家庭开始依赖智能学习工具来提升学习效率和自主性。其中,初中学习机因其集视频课程、AI辅导、错题整理、学习反馈等多功能于一体,成为当前市场热度最高的教育硬件之一。本文将围绕市场上主流的几款初中学习机进行客观分析,重点介绍简单一百、学而思、科大讯飞、作业帮四款产
- 拼多多商品详情API接口:社交电商的得力助手
lovelin+vI7809804594
图搜索算法算法人工智能爬虫API
在"人找货"向"货找人"的范式转移中,拼多多凭借社交裂变模式重塑中国电商格局。其商品详情API接口作为连接6.8亿消费者与1500万商家的数字纽带,日均调用量突破100亿次,支撑着秒杀、拼团、砍价等特色玩法。这一技术工具不仅是数据通道,更是社交电商生态的神经中枢,驱动着用户增长、流量分发和交易转化的全链路优化。一、技术解码:商品详情API的架构设计与核心能力高并发架构体系分片存储策略:采用TIDB
- 基于机器学习的智能文本分类技术研究与应用
在当今数字化时代,文本数据的爆炸式增长给信息管理和知识发现带来了巨大的挑战。从新闻文章、社交媒体帖子到企业文档和学术论文,海量的文本数据需要高效地分类和管理,以便用户能够快速找到所需信息。传统的文本分类方法主要依赖于人工规则和关键词匹配,这些方法不仅效率低下,而且难以应对复杂多变的文本内容。近年来,机器学习技术的快速发展为文本分类提供了一种高效、自动化的解决方案。一、机器学习在文本分类中的应用概述
- Python打卡训练营Day26
宸汐Fish_Heart
Python打卡训练pythonjava数据库
@浙大疏锦行DAY26函数专题1知识点回顾:1.函数的定义2.变量作用域:局部变量和全局变量3.函数的参数类型:位置参数、默认参数、不定参数4.传递参数的手段:关键词参数5.传递参数的顺序:同时出现三种参数类型时作业:题目1:计算圆的面积●任务:编写一个名为calculate_circle_area的函数,该函数接收圆的半径radius作为参数,并返回圆的面积。圆的面积=π*radius²(可以使
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比