一、概述
上一篇文章中了解了一下JobTracker的部分机制,如作业的恢复、作业权限管理、队列权限管理等。本文将继续探讨有关JobTracker的相关机制,其中主要介绍JobTracker中的各种线程功能以及他们具体的实现流程和jobTracker中的对象映射模型。
二、JobTracker中各种线程的作用
JobTacker作为MapReduce框架的控制中心,其稳定性以及容错性的重要性就不言而喻了。JobTracker内部会通过offerServer方法去启动若干个重要的后台服务线程来检测和处理JobTracker在工作可能发生的各种异常情况以及产生的历史数据、残留数据。看看JobTracker的源码中这些线程都有哪些:
ExpireTrackers expireTrackers = new ExpireTrackers();//expireTrackersThread的线程体 Thread expireTrackersThread = null;//用于检测和清理死掉的TaskTracker RetireJobs retireJobs = new RetireJobs();//retireJobsThread的线程体 Thread retireJobsThread = null;//清理长时间保存在内存中已经完成的作业信息线程 final int retiredJobsCacheSize; ExpireLaunchingTasks expireLaunchingTasks = new ExpireLaunchingTasks();//expireLaunchingTaskThread的线程体 Thread expireLaunchingTaskThread = //检测已经被分配task的但是一直没有汇报的TaskTracker new Thread(expireLaunchingTasks,"expireLaunchingTasks"); CompletedJobStatusStore completedJobStatusStore = null;//completedJobsStoreThread的线程体 Thread completedJobsStoreThread = null;//处理已经运行完毕的作业信息,将其保存在HDFS中
下面我们一个一个详细地来探讨这些线程。
(1)expireTrackersThread
该线程的主要作用是每10/3 min(实质为TASKTRACKER_EXPIRY_INTERVAL/3,TASKTRACKER_EXPIRY_INTERVAL代表过期间隔)间隔去检测和清理死掉的TaskTracker。每个TaskTracker周期性的向JobTracker发送包含了本节点的资源以及任务完成情况信息等的心跳信息,而JobTracker也会记录下每个TaskTracker最近汇报心跳的时间。如果某个TaskTracker在10min(源代码中由常量TASKTRACKER_EXPIRY_INTERVAL控制默认为10 * 60 * 1000ms即1min,可以由参数mapred.tasktracker.expiry.interval进行配置)内没有汇报心跳信息,JobTracker就会认为该TaskTracker已经挂掉,接着就会将该TaskTracker的各种数据结构从JobTracker中移除,同时也会将该TaskTacker所在节点的所有Task状态标注为KILLED_UNCLEAN。看一下expireTrackersThread 线程的run方法,以及我的理解注释:
;
class ExpireTrackers implements Runnable { public ExpireTrackers() { } /** * The run method lives for the life of the JobTracker, and removes TaskTrackers * that have not checked in for some time. */ public void run() { while (true) { try { // // Thread runs periodically to check whether trackers should be expired. // The sleep interval must be no more than half the maximum expiry time // for a task tracker. // Thread.sleep(TASKTRACKER_EXPIRY_INTERVAL / 3);//每隔这么多时间检测一次 // // Loop through all expired items in the queue // // Need to lock the JobTracker here since we are // manipulating it's data-structures via // ExpireTrackers.run -> JobTracker.lostTaskTracker -> // JobInProgress.failedTask -> JobTracker.markCompleteTaskAttempt // Also need to lock JobTracker before locking 'taskTracker' & // 'trackerExpiryQueue' to prevent deadlock: // @see {@link JobTracker.processHeartbeat(TaskTrackerStatus, boolean, long)} synchronized (JobTracker.this) { synchronized (taskTrackers) { synchronized (trackerExpiryQueue) { long now = clock.getTime(); TaskTrackerStatus leastRecent = null; while ((trackerExpiryQueue.size() > 0) && (leastRecent = trackerExpiryQueue.first()) != null && //取出队列中的第一个TaskTracker状态对象,即时最近汇报心跳的TaskTracker,看是否超过最大间隔时间 ((now - leastRecent.getLastSeen()) > TASKTRACKER_EXPIRY_INTERVAL)) { // Remove profile from head of queue //将超过最大时间间隔且是最近汇报心跳的TaskTracker的状态信息从队列中移除 trackerExpiryQueue.remove(leastRecent); String trackerName = leastRecent.getTrackerName(); // Figure out if last-seen time should be updated, or if tracker is dead //获得最近一次汇报心跳的TaskTracker对象 TaskTracker current = getTaskTracker(trackerName); TaskTrackerStatus newProfile = (current == null ) ? null : current.getStatus(); // Items might leave the taskTracker set through other means; the // status stored in 'taskTrackers' might be null, which means the // tracker has already been destroyed. if (newProfile != null) { //判断最近一次汇报心跳信息的TaskTracker对象是否已经过期 if ((now - newProfile.getLastSeen()) > TASKTRACKER_EXPIRY_INTERVAL) { //TaskTracker已经超过最大时间间隔,将其destroy掉。如果该TaskTracker //在“黑名单”或者“灰名单”中,将其移除,最后将该TaskTracker的状态变为KILLED_UNCLEAN removeTracker(current); // remove the mapping from the hosts list String hostname = newProfile.getHost(); hostnameToTaskTracker.get(hostname).remove(trackerName); } //最近一次汇报心跳信息的TaskTracker没有过期,更新其在 //trackerExpiryQueue队列中的信息 else { // Update time by inserting latest profile trackerExpiryQueue.add(newProfile); } } } } } } } catch (InterruptedException iex) { break; } catch (Exception t) { LOG.error("Tracker Expiry Thread got exception: " + StringUtils.stringifyException(t)); } } } }
根据上面的源代码小结一下expireTrackersThread线程的流程:
首先,JobTracker每隔TASKTRACKER_EXPIRY_INTERVAL / 3(即10/3min)对trackerExpiryQueue队列中的第一个TaskTracker(即时最近一个向JobTracker汇报心跳的TaskTracker)的状态信息检测一次是否过期,如果过期则将该TaskTracker的状态信息从trackerExpiryQueue队列中移除。然后,根据该TaskTracker的名称获取其TaskTracker对象,再次判读其是否超过有效时间(到这里已经经过了2次判断),如果超过则将该TaskTracker对象destory掉,如果该TaskTracker在“黑名单”或者“灰名单”中,将其移除,最后将该TaskTracker的状态变为KILLED_UNCLEAN,如果没有过期则把已经更新过的TaskTracker状态信息重新放回trackerExpiryQueue队列中。
(2)retireJobsThread
先看线程体源码和我读源码时的注释的一些理解:
/** * The run method lives for the life of the JobTracker, * and removes Jobs that are not still running, but which * finished a long time ago. */ public void run() { while (true) { try { Thread.sleep(RETIRE_JOB_CHECK_INTERVAL);//每隔RETIRE_JOB_CHECK_INTERVAL(1min)进行一次检测 ListretiredJobs = new ArrayList (); long now = clock.getTime(); long retireBefore = now - RETIRE_JOB_INTERVAL;//过期时间阀值 synchronized (jobs) { for(JobInProgress job: jobs.values()) { if (minConditionToRetire(job, now) &&//判断作业状态信息,不能为RUNNING和PREP状态 (job.getFinishTime() < retireBefore)) {//判断时间差,看判断是否过期(判断作业是否过期的第一条件) retiredJobs.add(job);//将已经过期的JIP放到指定的List中以便下面处理 } } } synchronized (userToJobsMap) {//userToJobsMap对象代表用户信息和JIP的映射 Iterator >> userToJobsMapIt = userToJobsMap.entrySet().iterator(); while (userToJobsMapIt.hasNext()) { Map.Entry > entry = userToJobsMapIt.next(); ArrayList userJobs = entry.getValue(); Iterator it = userJobs.iterator(); while (it.hasNext() && //将当前环境所有JIP遍历 userJobs.size() > MAX_COMPLETE_USER_JOBS_IN_MEMORY) {//判断作业是否过期的第二条件,判断当前JIP在内存的数目是否超过100(默认) JobInProgress jobUser = it.next(); if (retiredJobs.contains(jobUser)) { LOG.info("Removing from userToJobsMap: " + jobUser.getJobID()); it.remove();//将过期并且JIP容量超过100的JIP从userToJobsMap结构中移除 } else if (minConditionToRetire(jobUser, now)) {//再次判断是否超时,这个比较特殊now值还是原来的值,意思就是包含前面程序流程花费时间在内的JIP超时了 LOG.info("User limit exceeded. Marking job: " + jobUser.getJobID() + " for retire."); retiredJobs.add(jobUser);//将超时的JIP放进List中 it.remove();//将过期的JIP从userToJobsMap结构中移除 } } if (userJobs.isEmpty()) {//userToJobsMap结构的同步维护 userToJobsMapIt.remove(); } } } if (!retiredJobs.isEmpty()) {//判断过期的JIP队列是否完全清空 synchronized (JobTracker.this) { synchronized (jobs) { synchronized (taskScheduler) { for (JobInProgress job: retiredJobs) { removeJobTasks(job);//将JIP管理下的所有Tasks清除 jobs.remove(job.getProfile().getJobID());//从内存中清除JIP for (JobInProgressListener l : jobInProgressListeners) { l.jobRemoved(job);//从监听器中清除JIP } String jobUser = job.getProfile().getUser(); LOG.info("Retired job with id: '" + job.getProfile().getJobID() + "' of user '" + jobUser + "'"); // clean up job files from the local disk JobHistory.JobInfo.cleanupJob(job.getProfile().getJobID());//将作业文件从本地disk中删除 addToCache(job);//将过期作业统一保存在过期队列中,当过期作业超过1000个(由mapred.job.tracker.retiredjobs.cache.size参数配置,默认1000)时,将会从内存中彻底删除 } } } } } } catch (InterruptedException t) { break; } catch (Throwable t) { LOG.error("Error in retiring job:\n" + StringUtils.stringifyException(t)); } } } }
看完源码我理解时的一些注释,现在总结一下retireJobsThread线程的主要机制:
该线程的作用比较简单主要用于每隔1min(源码中由常量RETIRE_JOB_CHECK_INTERVAL决定,可以通过mapred.jobtracker.retirejob.check参数配置,默认为1min)进行检测清理长时间(now - RETIRE_JOB_INTERVAL,now为当前时间,RETIRE_JOB_INTERVAL由参数mapred.jobtracker.retirejob.interval配置,默认为24 * 60 * 60 * 1000即24H)驻留在内存中已经完成的作业信息。具体的过期标准总结如下:
当作业满足下面条件1、2或者1、3时,作业就会被转移到过期队列中并且在JobTracker中删除一些对应的数据结构,如userToJobsMap。
另外说明一下:过期作业统一保存在过期队列中,当过期作业超过1000个(由mapred.job.tracker.retiredjobs.cache.size参数配置,默认1000)时,将会从内存中彻底删除。 |
(3)expireLaunchingTaskThread
expireLaunchingTaskThread线程的实现流程比较简单,每隔10/3 min去检测当JobTracker的任务调度器将某个任务分配个TaskTracker后,如果该任务在10min内没有进行进度汇报,那么JobTracker就会认为在任务分配失败,并且将其状态置为"FAILED"。代码如下:
public void run() { while (true) { try { // Every 3 minutes check for any tasks that are overdue Thread.sleep(TASKTRACKER_EXPIRY_INTERVAL/3);//检测时间间隔默认10/3min long now = clock.getTime(); if(LOG.isDebugEnabled()) { LOG.debug("Starting launching task sweep"); } synchronized (JobTracker.this) { synchronized (launchingTasks) { Iterator> itr = launchingTasks.entrySet().iterator(); while (itr.hasNext()) { Map.Entry pair = itr.next(); TaskAttemptID taskId = pair.getKey(); long age = now - (pair.getValue()).longValue(); LOG.info(taskId + " is " + age + " ms debug."); //判断Task没有进行汇报的时间是否超过10 * 60 * 1000ms即10min if (age > TASKTRACKER_EXPIRY_INTERVAL) { LOG.info("Launching task " + taskId + " timed out."); TaskInProgress tip = null; tip = taskidToTIPMap.get(taskId);//获得当前超时没有汇报的TIP if (tip != null) { JobInProgress job = tip.getJob(); String trackerName = getAssignedTracker(taskId); TaskTrackerStatus trackerStatus = //获得当前超时没有汇报的TIP状态信息对象 getTaskTrackerStatus(trackerName); // This might happen when the tasktracker has already // expired and this thread tries to call failedtask // again. expire tasktracker should have called failed // task! //使当前超时没有汇报的Task失败,将其状态置为“FAILED” if (trackerStatus != null) job.failedTask(tip, taskId, "Error launching task", tip.isMapTask()? TaskStatus.Phase.MAP: TaskStatus.Phase.STARTING, TaskStatus.State.FAILED, trackerName); } itr.remove();//JobTracer从数据结构中,将此过期的TaskTracker清除掉 } else { // the tasks are sorted by start time, so once we find // one that we want to keep, we are done for this cycle. break; } } } } } catch (InterruptedException ie) { // all done break; } catch (Exception e) { LOG.error("Expire Launching Task Thread got exception: " + StringUtils.stringifyException(e)); } } }
(4)completedJobsStoreThread
该线程的作用主要是将已经运行完成的作业运行信息保存到HDFS上,并提供一系列存取信息的方法。通过保存作业运行日志这种方式,用户可以查询任意时间点提交的作业并可以还原其运行信息。该线程可以解决下面问题:
|
看看completedJobsStoreThread线程的几个控制参数:
active = conf.getBoolean("mapred.job.tracker.persist.jobstatus.active", false); if (active) { retainTime = conf.getInt("mapred.job.tracker.persist.jobstatus.hours", 0) * HOUR; jobInfoDir = conf.get("mapred.job.tracker.persist.jobstatus.dir", JOB_INFO_STORE_DIR);
mapred.job.tracker.persist.jobstatus.active:其否启动该线程,默认不启动。
mapred.job.tracker.persist.jobstatus.hours:作业运行信息保存时间,默认0。
mapred.job.tracker.persist.jobstatus.dir:作业运行信息保存的路径,默认为/jobtracker/jobsInfo
注意:从配置参数中我们可以看出MapReduce框架中,该线程默认是不启动的,如果要启动的话需要对上面的几个参数进行相应的配置。
三、JobTracker的对象映射管理模型
在前面对JobTracker线程作业源码分析的时候我们会经常看到映射的Map对象,如userToJobsMap。这些映射对象保存了JobTracker在运行过程中的重要信息,TaskTracker、TIP等结构信息。MapReduce框架这样做是为了使用这种key/value方式的数据结构去迅速查找和定位各种对象。比如,为了能够快速通过作业id找到与其对象的JIP对象,JobTracker会将所有运行作业按照jobID与JIP的映射保存到Map结构jobs中。为了快速找到某个TaskTracker上的正在运行的Task,JobTracker将TrackerID和TaskID集合的映射关系保存在Map结构tarckerToTaskMap中。有了这些映射结构,JobTrcker的各种操作,比如监控、更新等,实际上就是修改这些数据结构的映射关系。源码如下:
// All the known jobs. (jobid->JobInProgress) Mapjobs = Collections.synchronizedMap(new TreeMap ()); // (user -> list of JobInProgress) TreeMap > userToJobsMap = new TreeMap >(); // (trackerID --> list of jobs to cleanup) Map > trackerToJobsToCleanup = new HashMap >(); // (trackerID --> list of tasks to cleanup) Map > trackerToTasksToCleanup = new HashMap >(); // All the known TaskInProgress items, mapped to by taskids (taskid->TIP) Map taskidToTIPMap = new TreeMap (); // This is used to keep track of all trackers running on one host. While // decommissioning the host, all the trackers on the host will be lost. Map > hostnameToTaskTracker = Collections.synchronizedMap(new TreeMap >()); // (taskid --> trackerID) TreeMap taskidToTrackerMap = new TreeMap (); // (trackerID->TreeSet of taskids running at that tracker) TreeMap > trackerToTaskMap = new TreeMap >(); // (trackerID -> TreeSet of completed taskids running at that tracker) TreeMap > trackerToMarkedTasksMap = new TreeMap >(); // (trackerID --> last sent HeartBeatResponse) Map trackerToHeartbeatResponseMap = new TreeMap (); // (hostname --> Node (NetworkTopology)) Map hostnameToNodeMap = Collections.synchronizedMap(new TreeMap ());
四、总结
本文主要讲述了JobTracker中各种线程的作用以及他们具体的实现流程。另外,还介绍了JobTracker中对运行时各种对象的数据结构。到现在为止,对于JobTracker的部分实现机制已经有了一些认识,现在结合前几篇关于JobTracker机制研究的blog对其大体结构总结一下,引用参考资料[1]中的图,如下:
---------------------------------------hadoop源码分析系列------------------------------------------------------------------------------------------------------------
hadoop作业分片处理以及任务本地性分析(源码分析第一篇)
hadoop作业提交过程分析(源码分析第二篇)
hadoop作业初始化过程详解(源码分析第三篇)
JobTracker之作业恢复与权限管理机制(源码分析第四篇)
JobTracker之辅助线程和对象映射模型分析(源码分析第五篇)
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
参考文献:
[1]《Hadoop技术内幕:深入解析MapReduce架构设计与实现原理》
[2] http://hadoop.apache.org/