AWS EC2 服务建立云端Deep Learning开发环境 -- GPU with Tensorflow and Caffe

1. AWS EC2 的建立

  • AMI 选择
Ubuntu Server 14.04 LTS (HVM), SSD Volume Type - ami-48db9d28
  • GPU Instance 选择

目前只有g2.2xlarge是最廉价的方案,里面的硬盘空间最大为60g

  • 因此需要添加 EBS 硬盘来扩充空间

Root - /dev/sda1 60GB ebs - /dev/sdb 200GB

2. Access EC2 through ssh

  • 使用ssh连接系统

  • weiwei_0903.pem 是下载到本地一个目录的key

  • 然后执行下面语句


ssh -i "weiwei_0903.pem" [email protected]
  • 让 know_host 记住这个IP地址即可

3. 加载 EBS 到刚才建立的 GPU Instance

  • 查看EBS是不是存在
ubuntu@ip-*-*-*-*:~$ lsblk NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT xvda 202:0 0 8G 0 disk `-xvda1 202:1 0 8G 0 part / xvdb 202:16 0 100G 0 disk /home/ubuntu/workspace
  • 其中 xvdb 是我单独添加的 EBS 硬盘。在最初,MOUNTPOINT下的/home/ubuntu/workspace应该是没有的,可以通过下面的步骤完成。

  • 查询EBS是否已经有 File System

[ec2-user ~]$ sudo file -s /dev/xvdb /dev/xvdb: data
  • 返回值是data意味着这个device目前没有文件系统,需要进一步格式化
[ec2-user ~]$ sudo mkfs -t ext4 /dev/xvdb
  • 再次查看
ec2-user ~]$ sudo file -s /dev/xvdb /dev/xvdb: Linux rev 1.0 ext4 filesystem data, UUID=1701d228-e1bd-4094-a14c-8c64d6819362 (needs journal recovery) (extents) (large files) (huge files)
  • 挂载格式化好的device到当前目录
ubuntu@ip-*-*-*-*:~$ sudo mount /dev/xvdb workspace ubuntu@ip-*-*-*-*:~$ lsblk NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT xvda 202:0 0 8G 0 disk `-xvda1 202:1 0 8G 0 part / xvdb 202:16 0 100G 0 disk /home/ubuntu/workspace
  • 此时就可以看到xvdb这个硬盘的挂载点。

  • 添加权限

$ sudo chmod go+rw workspace
  • 关于其他Storage
/dev/sda = /dev/xvda in the instance 8Gb "EBS persistent storage" /dev/sdb = /dev/xvdb in the instance 400Gb "Non persistent storage"
  • 查看 Storage
df -h

4. 安装相关软件

  • 基本依赖库
sudo apt-get update 
sudo apt-get upgrade 
sudo apt-get install -y build-essential git python-pip libfreetype6-dev libxft-dev libncurses-dev libopenblas-dev gfortran python-matplotlib libblas-dev liblapack-dev libatlas-base-dev python-dev python-pydot linux-headers-generic linux-image-extra-virtual unzip python-numpy swig python-pandas python-sklearn unzip wget pkg-config zip g++ zlib1g-dev 
sudo pip install -U pip
  • Install Python2.7, Anconda, CUDA 7.5.178, CUDNN 7.0, Tensorflow 0.10.0
git clone https://gist.github.com/weiweikong/374e93d9ccb88ea45341268a06897259 aws-tensorflow-python2.7-setup
  • 注意给bash文件权限

  • Set a folder to /mnt

# stop on error 
set -e 
############################################
 # install into /mnt/bin 
sudo mkdir -p /mnt/bin 
sudo chown ubuntu:ubuntu /mnt/bin
  • Install Anaconda
wget https://repo.continuum.io/archive/Anaconda2-4.1.1-Linux-x86_64.sh 
bash Anaconda2-4.1.1-Linux-x86_64.sh -b -p /mnt/bin/anaconda2 
rm Anaconda2-4.1.1-Linux-x86_64.sh 
echo 'export PATH="/mnt/bin/anaconda2/bin:$PATH"' >> ~/.bashrc
  • Install Required Packages
# install the required packages 
sudo apt-get update && sudo apt-get -y upgrade 
sudo apt-get -y install linux-headers-$(uname -r) linux-image-extra-`uname -r`
  • Install CUDA 7.5
# install cuda wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1404/x86_64/cuda-repo-ubuntu1404_7.5-18_amd64.deb 
sudo dpkg -i cuda-repo-ubuntu1404_7.5-18_amd64.deb
rm cuda-repo-ubuntu1404_7.5-18_amd64.deb 
sudo apt-get update 
sudo apt-get install -y cuda
  • Manually download CUDNN 7.5 and upload
scp -i your_pem_file.pem cudnn-7.5-linux-x64-v5.0-ga.tgz [email protected]:~/.
  • Install cuDNN 7.5.1
# get cudnn 
tar xvzf cudnn-7.5-linux-x64-v5.1.tgz 
cd cuda 
sudo cp lib64/* /usr/local/cuda/lib64/ 
sudo cp include/* /usr/local/cuda/include/ 
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn* 

echo 'export CUDA_HOME=/usr/local/cuda 
export CUDA_ROOT=/usr/local/cuda 
export PATH=$PATH:$CUDA_ROOT/bin:$HOME/bin 
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CUDA_ROOT/lib64 
' >> ~/.bashrc
  • Install Tensorflow with only cuDNN 7.5.1 and Python 2.7
export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.10.0-cp27-none-linux_x86_64.whl /mnt/bin/anaconda2/bin/pip install $TF_BINARY_URL
  • Install Caffe 依赖库
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler 
sudo apt-get install --no-install-recommends libboost-all-dev 
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
  • 配置 Caffe 文件并编译
cp Makefile.config.example Makefile.config
# Adjust Makefile.config (for example, if using Anaconda Python, or if cuDNN is desired)

mkdir build 
cd build 
cmake ..
make all 
make test 
make runtest
  • Test Caffe Install
sh data/mnist/get_mnist.sh 
sh examples/mnist/create_mnist.sh 
sh examples/mnist/train_lenet.sh
  • Monitor Code
# install monitoring programs 
sudo wget https://git.io/gpustat.py -O /usr/local/bin/gpustat 
sudo chmod +x /usr/local/bin/gpustat 
sudo nvidia-smi daemon 
sudo apt-get -y install htop
  • Ref: How to install CUDA Toolkit and cuDNN for deep learning - PyImageSearch

4.1 Trouble Shooting

  • Caffe 遇到 locale::facet::_S_create_c_locale name not valid

    • add export LC_ALL="en_US.UTF-8" to bashrc

    • Ref:https://gist.github.com/wangruohui/679b05fcd1466bb0937f

  • Tensorflow 遇到 AttributeError: 'GFile' object has no attribute 'size'

sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
  • libdc1394 error: Failed to initialize libdc1394
sudo ln /dev/null /dev/raw1394
  • Cafee 遇到 Aborted at 1458527401 (unix time) try "date -d @1458527401" if you are using GNU date

  • Check Nvidia GPUs List

$ nvidia-smi 
  • Set Specific GPU Visible
CUDA_VISIBLE_DEVICES=1 Only device 1 will be seen 
CUDA_VISIBLE_DEVICES=0,1 Devices 0 and 1 will be visible 
CUDA_VISIBLE_DEVICES=”0,1” Same as above, quotation marks are optional
CUDA_VISIBLE_DEVICES=0,2,3 Devices 0, 2, 3 will be visible; device 1 is masked
  • 目前选择两个GPU工作不会报错

  • Ref: https://github.com/BVLC/caffe/issues/1993

4.2 Access to EC2 using FileZilla

  • Download FileZilla and setup.

  • Add .pem key file

    • Edit -> Settings -> Connection -> SFTP

    • Select the .pem file and add it to the list.

  • Add EC2 connection

    • File -> Site Manager

    • Host: EC2 Public IP (Could be check under EC2 Console)

    • Protocol: SFTP

    • Login Type: Normal

    • User: ubuntu

    • Password: /

  • Press Connect

你可能感兴趣的:(AWS EC2 服务建立云端Deep Learning开发环境 -- GPU with Tensorflow and Caffe)