实验问题描述:
加权无向图最短路径查找,从一点到另外一点的最小路径,比如从成都到北京,途中有好多城市,如何规划路线,能够使总共的路线最短,如何使总共的费用最低
实验步骤(采用Dijkstra算法):
- 加权有向图的实现
下面代码是加权有向图的边的数据结构
package DiEdge; //java的包管理
public class DiEdge {
private int from;
private int to;
private double weight;
public DiEdge(int from, int to, double weight) {
this.from = from;
}
}
有向的也会比无向的简单一些,因为两个顶点有明显的前后顺序。
下面是加权有向图的实现,加权图的生成
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
public class EdgeWeightedDiGraph- {
private int vertexNum; //顶点的个数
private int edgeNum; //边的个数
// 不是领接表,是以单个顶点为中心向四周发散的一种数据结构
private List
> adj;
// 顶点信息,是一个列表,所有的列表信息都会呈现在这个list中
private List- vertexInfo;
//一下提供3种构造方法
public EdgeWeightedDiGraph(List
- vertexInfo) {
this.vertexInfo = vertexInfo;
this.vertexNum = vertexInfo.size();
adj = new ArrayList<>();
for (int i = 0; i < vertexNum; i++) {
adj.add(new LinkedList<>());
}
}
public EdgeWeightedDiGraph(List
- vertexInfo, int[][] edges, double[] weight) {
this(vertexInfo);
for (int i = 0; i < edges.length; i++) {
Didge edge = new DiEdge(edges[i][0], edges[i][1], weight[i]);
addDiEdge(edge);
}
}
public EdgeWeightedDiGraph(int vertexNum) {
this.vertexNum = vertexNum;
adj = new ArrayList<>();
for (int i = 0; i < vertexNum; i++) {
adj.add(new LinkedList<>());
}
}
public void addEdge(DiEdge edge) {
adj.get(edge.from()).add(edge);
edgeNum++;
}
//返回与某个顶点为中心的所有的边
//*v* 是顶点的编号
public Iterable
adj(int v) {
return adj.get(v);
}
public List edges() {
List edges = new LinkedList<>();
for (int i = 0; i < vertexNum; i++) {
for (DiEdge e : adj(i)) {
edges.add(e);
}
}
return edges;
}
public int vertexNum() {
return vertexNum;
}
public int edgeNum() {
return edgeNum;
}
public Item getVertexInfo(int i) {
return vertexInfo.get(i);
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append(vertexNum).append("个顶点, ").append(edgeNum).append("条边。\n");
for (int i = 0; i < vertexNum; i++) {
sb.append(i).append(": ").append(adj.get(i)).append("\n");
}
return sb.toString();
}
public static void main(String[] args) {
List vertexInfo = List.of("v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7");
int[][] edges = {{4, 5}, {5, 4}, {4, 7}, {5, 7}, {7, 5}, {5, 1}, {0, 4}, {0, 2},
{7, 3}, {1, 3}, {2, 7}, {6, 2}, {3, 6}, {6, 0}, {6, 4}};
double[] weight = {0.35, 0.35, 0.37, 0.28, 0.28, 0.32, 0.38, 0.26, 0.39, 0.29,
0.34, 0.40, 0.52, 0.58, 0.93};
EdgeWeightedDiGraph graph = new EdgeWeightedDiGraph<>(vertexInfo, edges, weight);
System.out.println("该图的邻接表为\n"+graph);
System.out.println("该图的所有边:"+ graph.edges());
}
}
Dijkstra算法的实现
import java.util.*;
public class Dijkstra {
private DiEdge[] edgeTo;
private double[] distTo;
private Map minDist;
public Dijkstra(EdgeWeightedDiGraph> graph, int s) {
edgeTo = new DiEdge[graph.vertexNum()];
distTo = new double[graph.vertexNum()];
minDist = new HashMap<>();
for (int i = 0; i < graph.vertexNum(); i++) {
distTo[i] = Double.POSITIVE_INFINITY; // 1.0 / 0.0为INFINITY
}
// 到起点距离为0
distTo[s] = 0.0;
relax(graph, s);
while (!minDist.isEmpty()) {
relax(graph, delMin());
}
}
private int delMin() {
Set> entries = minDist.entrySet();
Map.Entry min = entries.stream().min(Comparator.comparing(Map.Entry::getValue)).get();
int key = min.getKey();
minDist.remove(key);
return key;
}
private void relax(EdgeWeightedDiGraph> graph, int v) {
for (DiEdge edge : graph.adj(v)) {
int w = edge.to();
if (distTo[v] + edge.weight() < distTo[w]) {
distTo[w] = distTo[v] + edge.weight();
edgeTo[w] = edge;
if (minDist.containsKey(w)) {
minDist.replace(w, distTo[w]);
System.out.println(w);
} else {
minDist.put(w, distTo[w]);
}
}
}
}
public double distTo(int v) {
return distTo[v];
}
public boolean hasPathTo(int v) {
return distTo[v] != Double.POSITIVE_INFINITY;
}
public Iterable pathTo(int v) {
if (hasPathTo(v)) {
LinkedList path = new LinkedList<>();
for (DiEdge edge = edgeTo[v]; edge != null; edge = edgeTo[edge.from()]) {
path.push(edge);
}
return path;
}
return null;
}
public static void main(String[] args) {
List vertexInfo = List.of("v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7");
int[][] edges = {{4, 5}, {5, 4}, {4, 7}, {5, 7}, {7, 5}, {5, 1}, {0, 4}, {0, 2},
{7, 3}, {1, 3}, {2, 7}, {6, 2}, {3, 6}, {6, 0}, {6, 4}};
double[] weight = {0.35, 0.35, 0.37, 0.28, 0.28, 0.32, 0.38, 0.26, 0.39, 0.29,
0.34, 0.40, 0.52, 0.58, 0.93};
EdgeWeightedDiGraph graph = new EdgeWeightedDiGraph(vertexInfo, edges, weight);
Dijkstra dijkstra = new Dijkstra(graph, 0);
for (int i = 0; i < graph.vertexNum(); i++) {
System.out.print("0 to " + i + ": ");
System.out.print("(" + dijkstra.distTo(i) + ") ");
System.out.println(dijkstra.pathTo(i));
}
}
}