【朝花夕拾】Android多线程之(二)ThreadLocal篇

       如果转载请声明,转自【https://www.cnblogs.com/andy-songwei/p/12040372.html】,谢谢!

       本文的主要内容为:

【朝花夕拾】Android多线程之(二)ThreadLocal篇_第1张图片

 

1、一个生活中的场景

       鉴于普罗大众都喜欢看热闹,咱们先来看个热闹再开工吧!

 

场景一: 

 中午了, 张三、李四和王五一起去食堂大菜吃饭。食堂刚经营不久,还很简陋,负责打菜的只有一位老阿姨。

 张三:我要一份鸡腿。

 李四:我要一份小鸡炖蘑菇。

 张三:我再要一份红烧肉。

 王五:我要一份红烧排骨。

 李四:我不要小鸡炖蘑菇了,换成红烧鲫鱼。

 王五:我再要一份椒盐虾。

 张三:我再要一份梅菜扣肉。

 ......

 张三:我点的红烧肉,为啥给我打红烧鲫鱼?

 李四:我的红烧鲫鱼呢?

 王五:我有点红烧肉吗?

 ......

 李四:我点了15元的菜,为啥扣我20?

 王五:我点了20元的菜,只扣了我15元,赚了,窃喜!

 张三:我已经刷了卡了,怎么还叫我刷卡?

 ......

 老阿姨毕竟上了年纪,不那么利索,这几个小伙子咋咋呼呼,快言快语,老阿姨也被搅晕了,手忙脚乱,忙中出错,这仨小伙也是怨声载道。

 场景二:

 食堂领导看到这个场景,赶紧要求大家排队,一个一个来。后来,老阿姨轻松多了,也没有再犯错了。

 但是,新的问题又来了,打菜的人当中,很多妹子很磨叽,点个菜犹犹豫豫想半天。

 张三:太慢了,我快饿死了!

 李四:再这么慢,下次去别家!

 王五:我等得花儿都谢啦!

 赵六:啥?我点了啥菜,花了多少钱,其它人怎么都知道?是阿姨多嘴了,还是其它人偷偷关注我很久了?太不安全了,一点隐私都没有,以后不来了。

 ......

 场景三:

  领导听到这些怨言,心里很不是滋味,大手一挥:扩大经营,以后为你们每一个人开一个流动窗口并请一位私人阿姨,只为你一个人服务!

  从此,再也没有怨言,阿姨也没有再犯错了,皆大欢喜......

       场景一就像多个线程同时去操作一个数据,最终的结果就是混乱。于是出现了同步锁synchronized,同一时刻只运行一个线程操作,就像场景二,大家先来后到排队,混乱的问题解决了。但是此时一个线程在操作的时候,其它线程只能闲等着,而且这些数据是共享的,每个线程希望拥有只能自己操作的私人数据,ThreadLocal就正好满足了这个需求。

       所以,相比于synchronized,Threadlocal通过牺牲空间来换取时间和效率。

 

2、ThreadLocal简介 

       ThreadLocal官方的介绍为:

1 /**
2  * This class provides thread-local variables.  These variables differ from
3  * their normal counterparts in that each thread that accesses one (via its
4  * {@code get} or {@code set} method) has its own, independently initialized
5  * copy of the variable.  {@code ThreadLocal} instances are typically private
6  * static fields in classes that wish to associate state with a thread (e.g.,
7  * a user ID or Transaction ID).
8  */

       大致意思是:ThreadLocal提供了线程本地变量。这些变量与一般变量相比,其不同之处在于,通过它的get()和set()方法,每个线程可以访问自己独立拥有的初始变量副本。翻译成人话就是,ThreadLocal为每一个线程开辟了一个独立的存储器,只有对应的线程才能够访问其数据,其它线程则无法访问。对应于前文的场景,就像食堂为每一个人安排了一个窗口和专属阿姨为其打菜,这个过程中,这个窗口和阿姨就是其专属的独立的资源,其他人就无从知道他点了什么菜,花了多少钱。

 

3、ThreadLocal的简单使用示例 

    是骡子是马,先拉出来溜溜!先直观看看它的能耐,再来了解它丰富的内心:

 1 // =========实例3.1========
 2 private ThreadLocal mThreadLocal = new ThreadLocal<>();
 3 private void testThreadLocal() throws InterruptedException {
 4     mThreadLocal.set("main-thread");
 5     Log.i("threadlocaldemo", "result-1=" + mThreadLocal.get());
 6     Thread thread_1 = new Thread() {
 7         @Override
 8         public void run() {
 9             super.run();
10             mThreadLocal.set("thread_1");
11             Log.i("threadlocaldemo", "result-2=" + mThreadLocal.get());
12         }
13     };
14     thread_1.start();
15     //该句表示thread_1执行完后才会继续执行
16     thread_1.join();
17     Thread thread_2 = new Thread() {
18         @Override
19         public void run() {
20             super.run();
21             Log.i("threadlocaldemo", "result-3=" + mThreadLocal.get());
22         }
23     };
24     thread_2.start();
25     //该句表示thread_2执行完后才会继续执行
26     thread_2.join();
27     Log.i("threadlocaldemo", "result-4=" + mThreadLocal.get());
28 }

 在主线程中调用这个方法,运行结果:

1 12-13 13:42:50.117 25626-25626/com.example.demos I/threadlocaldemo: result-1=main-thread
2 12-13 13:42:50.119 25626-25689/com.example.demos I/threadlocaldemo: result-2=thread_1
3 12-13 13:42:50.119 25626-25690/com.example.demos I/threadlocaldemo: result-3=null
4 12-13 13:42:50.120 25626-25626/com.example.demos I/threadlocaldemo: result-4=main-thread

       看到这个结果会不会惊掉下巴呢?明明在第9行中set了值,第10行中也得到了对应的值,但第20行的get得到的却是null,第26行得到的是第3行set的值。这就是ThreadLocal的神奇功效,主线程set的值,只能在主线程get到;thread_1内部set的值,thread_1中才能get;thread_2中没有set,所以get到的就是null。

       而实现这,不要999,也不要99,只要3......三步即可:

1 ThreadLocal mThreadLocal = new ThreadLocal<>();
2 mThreadLocal.set(T);
3 mThreadLocal.get();

就是这么方便,就是这么简洁!

 

4、提供的4个主要接口

       ThreadLocal以其使用简单,风格简洁让人一见倾心。它对外提供的接口很少,当前SDK中,主要有4个:

1 public void set(T value) { }  
2 public T get() { }  
3 public void remove() { }  
4 protected T initialValue() { }  

为了保持对这些方法说明的原滋原味,我们直接通过源码中对其的注释说明来认识它们。

 (1)set()

 1 /**
 2  * Sets the current thread's copy of this thread-local variable
 3  * to the specified value.  Most subclasses will have no need to
 4  * override this method, relying solely on the {@link #initialValue}
 5  * method to set the values of thread-locals.
 6  *
 7  * @param value the value to be stored in the current thread's copy of
 8  *        this thread-local.
 9  */
10 public void set(T value)

设置当前线程的ThreadLocal值为指定的value。大部分子类没有必要重写该方法,可以依赖initialValue()方法来设置ThreadLocal的值。

  (2)get()

1 /**
2  * Returns the value in the current thread's copy of this
3  * thread-local variable.  If the variable has no value for the
4  * current thread, it is first initialized to the value returned
5  * by an invocation of the {@link #initialValue} method.
6  *
7  * @return the current thread's value of this thread-local
8  */
9 public T get()

用于获取当前线程所对应的ThreadLocal值。如果当前线程下,该变量没有值,会通过调用initialValue()方法返回的值对其进行初始化。

  (3)remove()

 1 /**
 2  * Removes the current thread's value for this thread-local
 3  * variable.  If this thread-local variable is subsequently
 4  * {@linkplain #get read} by the current thread, its value will be
 5  * reinitialized by invoking its {@link #initialValue} method,
 6  * unless its value is {@linkplain #set set} by the current thread
 7  * in the interim.  This may result in multiple invocations of the
 8  * {@code initialValue} method in the current thread.
 9  *
10  * @since 1.5
11  */
12  public void remove()

       该接口是从JDK1.5开始提供的,用于删除当前线程对应的ThreadLocal值,从而减少内存占用。在同一线程中,如果该方法被调用了,随后再调用get()方法时,会使得initialValue()被调用,从而ThreadLocal的值被重新初始化,除非此时在调用get()前调用了set()来赋值。该方法可能导致initialValue()被多次调用。该方法可以不用显示调用,因为当线程结束后,系统会自动回收线程局部变量值。所以该方法不是必须调用的,只不过显示调用可以加快内存回收。

  (4)initialValue()

 1 /**
 2  * Returns the current thread's "initial value" for this
 3  * thread-local variable.  This method will be invoked the first
 4  * time a thread accesses the variable with the {@link #get}
 5  * method, unless the thread previously invoked the {@link #set}
 6  * method, in which case the {@code initialValue} method will not
 7  * be invoked for the thread.  Normally, this method is invoked at
 8  * most once per thread, but it may be invoked again in case of
 9  * subsequent invocations of {@link #remove} followed by {@link #get}.
10  *
11  * 

This implementation simply returns {@code null}; if the 12 * programmer desires thread-local variables to have an initial 13 * value other than {@code null}, {@code ThreadLocal} must be 14 * subclassed, and this method overridden. Typically, an 15 * anonymous inner class will be used. 16 * 17 * @return the initial value for this thread-local 18 */ 19 protected T initialValue() { 20 return null; 21 }

       返回当前线程对应的ThreadLocal的初始值。当当前线程是通过get()方法第一次对ThreadLocal进行访问时,该方法将会被调用,除非当前线程之前调用过set()方法,在这种情况下initialValue()方法将不会被当前线程所调用。一般而言,该方法最多只会被每个线程调用一次,除非随后在当前线程中调用remove()方法,然后调用get()方法。该实现会简单地返回null;如果程序员希望ThreadLocal拥有一个初始值,而不是null,ThreadLocal需要定义一个子类,并且在子类中重写initialValue()方法。比较典型的做法是使用一个匿名内部类。该方法由protected修饰,可见其这样设计通常是为了供用户重写,从而自定义初始值。后面会再通过实例来演示该方法的使用。

 

5、ThreadLocal工作机制

       ThreadLocal使用起来非常简单,但它是如何实现为每一个Thread保存一份独立的数据的呢?我们先结合实例3.1来看set()方法都做了些什么:

1 //=========ThreadLocal=======源码5.1
2 public void set(T value) {
3     Thread t = Thread.currentThread();
4     ThreadLocalMap map = getMap(t);
5     if (map != null)
6         map.set(this, value);
7     else
8         createMap(t, value);
9 }

       首先就是获取当前的线程,然后根据当前线程来获取一个ThreadLocalMap,如果map不为null,就往map中插入指定值,注意这的key是ThreadLocal实例;如果map为null,就创建一个map。看看第4行getMap(t)做了啥:

 1 //=========ThreadLocal=======源码5.2
 2 /**
 3  * Get the map associated with a ThreadLocal. 
 4  * ......
 5  */
 6 ThreadLocalMap getMap(Thread t) {
 7     return t.threadLocals;
 8 }
 9 
10 /**
11  * ThreadLocalMap is a customized hash map suitable only for
12  * maintaining thread local values......
13  */
14 static class ThreadLocalMap {
15      ......
16 }
17 
18 //==========Thread========
19 ThreadLocal.ThreadLocalMap threadLocals = null;

       getMap()返回的是指定线程(也就是当前线程)的threadLocals变量,这个变量是ThreadLocal.ThreadLocalMap类型的,而ThreadLocalMap是一个仅适用于维护线程本地变量值的自定义的HashMap。简单来说,就是返回当前线程下的一个自定义HashMap。

       下面我抽取了ThreadLocalMap的部分代码,先来总体上认识它(这里我们不需要读懂其中的每一行代码,知道它里面主要做了哪些事就可以了):

  1 //=========源码5.3========
  2 static class ThreadLocalMap {
  3 
  4     static class Entry extends WeakReference> {
  5         /** The value associated with this ThreadLocal. */
  6         Object value;
  7 
  8         Entry(ThreadLocal k, Object v) {
  9             super(k);
 10             value = v;
 11         }
 12     }
 13 
 14     /**
 15      * The initial capacity -- MUST be a power of two.
 16      */
 17     private static final int INITIAL_CAPACITY = 16;
 18 
 19     /**
 20      * The table, resized as necessary.
 21      * table.length MUST always be a power of two.
 22      */
 23     private Entry[] table;
 24 
 25     /**
 26      * The number of entries in the table.
 27      */
 28     private int size = 0;
 29 
 30     /**
 31      * The next size value at which to resize.
 32      */
 33     private int threshold; // Default to 0
 34 
 35     /**
 36      * Set the resize threshold to maintain at worst a 2/3 load factor.
 37      */
 38     private void setThreshold(int len) {
 39         threshold = len * 2 / 3;
 40     }
 41     
 42     ThreadLocalMap(ThreadLocal firstKey, Object firstValue) {
 43         table = new Entry[INITIAL_CAPACITY];
 44         int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
 45         table[i] = new Entry(firstKey, firstValue);
 46         size = 1;
 47         setThreshold(INITIAL_CAPACITY);
 48     }
 49     
 50     /**
 51      * Get the entry associated with key.
 52      * ......
 53      */
 54     private Entry getEntry(ThreadLocal key) {
 55         int i = key.threadLocalHashCode & (table.length - 1);
 56         Entry e = table[i];
 57         if (e != null && e.get() == key)
 58             return e;
 59         else
 60             return getEntryAfterMiss(key, i, e);
 61     }
 62 
 63     /**
 64      * Set the value associated with key.
 65      * ......
 66      */
 67     private void set(ThreadLocal key, Object value) {
 68 
 69         // We don't use a fast path as with get() because it is at
 70         // least as common to use set() to create new entries as
 71         // it is to replace existing ones, in which case, a fast
 72         // path would fail more often than not.
 73 
 74         Entry[] tab = table;
 75         int len = tab.length;
 76         int i = key.threadLocalHashCode & (len-1);
 77 
 78         for (Entry e = tab[i];
 79              e != null;
 80              e = tab[i = nextIndex(i, len)]) {
 81             ThreadLocal k = e.get();
 82 
 83             if (k == key) {
 84                 e.value = value;
 85                 return;
 86             }
 87 
 88             if (k == null) {
 89                 replaceStaleEntry(key, value, i);
 90                 return;
 91             }
 92         }
 93 
 94         tab[i] = new Entry(key, value);
 95         int sz = ++size;
 96         if (!cleanSomeSlots(i, sz) && sz >= threshold)
 97             rehash();
 98     }
 99 
100     /**
101      * Remove the entry for key.
102      */
103     private void remove(ThreadLocal key) {
104         Entry[] tab = table;
105         int len = tab.length;
106         int i = key.threadLocalHashCode & (len-1);
107         for (Entry e = tab[i];
108              e != null;
109              e = tab[i = nextIndex(i, len)]) {
110             if (e.get() == key) {
111                 e.clear();
112                 expungeStaleEntry(i);
113                 return;
114             }
115         }
116     }
117 
118     /**
119      * Double the capacity of the table.
120      */
121     private void resize() {
122        ......
123     }
124 }
View Code

       这里面维护了一个Entry[] table数组,初始容量为16,当数据超过当前容量的2/3时,就开始扩容,容量增大一倍。每一个Entry的K为ThreadLocal对象,V为要存储的值。每一个Entry在数组中的位置,是根据其K(即ThreadLocal对象)的hashCode & (len - 1)来确定,如第44行所示,这里K的hashCode是系统给出的一个算法计算得到的。如果碰到K的hashCode值相同,即hash碰撞的场景,会采用尾插法形成链表。当对这个map进行set,get,remove操作的时候,也是通过K的hashCode来确定该Entry在table中的位置的,采用hashCode来查找数据,效率比较高。这也是HashMap底层实现的基本原理,如果研究过HashMap源码,这段代码就应该比较容易理解了。

       继续看源码5.1,第一次调用的时候,显然map应该是null,就要执行第8行createMap了,

1 //==========ThreadLocal=========源码5.4
2 void createMap(Thread t, T firstValue) {
3     t.threadLocals = new ThreadLocalMap(this, firstValue);
4 }

       结合ThreadLocalMap源码第41行的构造方法,就清楚了这个方法创建了一个ThreadLocalMap对象,并存储了一个Entry<当前的ThreadLocal对象,value>。此时,在当前的线程下拥有了一个ThreadLocalMap,这个ThreadLocalMap中维护了一个容量为16的table,table中存储了一个以当前的ThreadLocal对象为K,value值为V的Entry。Thread、ThreadLocalMap、ThreadLocal、Entry之间的关系可以表示为下图:

 【朝花夕拾】Android多线程之(二)ThreadLocal篇_第2张图片

 图5.1

       而如果当前Thread的map已经存在了,源码5.1就会执行第6行了,进而执行ThreadLocalMap中的set方法。结合前面对ThreadLocalMap的介绍,想必这个set方法也容易理解了,大致过程是:

    1)根据Thread找到map;

    2)通过传入的this(即ThreadLocal对象),得到hashCode;

    3)根据hashCode & (len - 1)确定对应Entry在table中的位置;

    4)如果该Entry存在,则替换Value,否则新建(ThreadLocalMap源码第78~92行表示在具有相同hashCode的Entry链表上找到对应的Entry,这和hash碰撞有关)。

 

       在调用ThreadLocal的get方法时又做了什么呢?看看其源码:

 1 //=========ThreadLocal======源码5.5
 2 public T get() {
 3     Thread t = Thread.currentThread();
 4     ThreadLocalMap map = getMap(t);
 5     if (map != null) {
 6         ThreadLocalMap.Entry e = map.getEntry(this);
 7         if (e != null) {
 8             @SuppressWarnings("unchecked")
 9             T result = (T)e.value;
10             return result;
11         }
12     }
13     return setInitialValue();
14 }

       现在,第12行及以前的代码应该很容易理解了,结合ThreadLocalMap中的get源码,我们再梳理一下:

    1)根据Thread找到自己的map;

    2)在map中通过this(即ThreadLocal对象)得到hashCode;

    3)通过hashCode & (len-1)找到对应Entry在table中的位置;

    4)返回Entry的value。

       而如果map为null,或者在map中找到的Entry为null,那么就执行第20行了。

 1 //==========ThreadLocal========源码5.6
 2 private T setInitialValue() {
 3     T value = initialValue();
 4     Thread t = Thread.currentThread();
 5     ThreadLocalMap map = getMap(t);
 6     if (map != null)
 7         map.set(this, value);
 8     else
 9         createMap(t, value);
10     return value;
11 }
12 
13 protected T initialValue() {
14     return null;
15 }
第13行的initialValue()方法,前面介绍过,可以让子类重写,即给ThreadLocal指定初始值;如果没有重写,那返回值就是null。第4~9行前面也介绍过了,使用或者创建map来存入该值。

最后还一个remove()方法

1 //======ThreadLocal======
2 public void remove() {
3     ThreadLocalMap m = getMap(Thread.currentThread());
4     if (m != null)
5         m.remove(this);
6 }

结合ThrealLocalMap中的remove方法,完成对ThreadLocal值的删除。其大致流程为:

    1)根据当前Thread找到其map;

    2)根据ThreadLocal对象得到hashCode;

    3)通过hashCode & (len -1)找到在table中的位置;

    4)在table中查找对应的Entry,如果存在则删除。

 

       总结:通过对提供的4个接口方法的分析,我们应该就能清楚了,ThreadLocal之所以能够为每一个线程维护一个副本,是因为每个线程都拥有一个map,这个map就是每个线程的专属空间。也就是存在下面的关系图(不用怀疑,该图和图5.1相比,只是少了容量大小):

【朝花夕拾】Android多线程之(二)ThreadLocal篇_第3张图片

结合这一节对ThreadLocal机制的介绍,实例3.1执行后的就存在如下的数据结构了:

 【朝花夕拾】Android多线程之(二)ThreadLocal篇_第4张图片

 

6、ThreadLocal在Looper中的使用

       ThreadLocal在系统源码中有很多地方使用,最典型的地方就是Handler的Looper中了。这里结合Looper中的源码,来了解一下ThreadLocal在系统源码中的使用。

       我们知道,在一个App进程启动的时候,会在ActiivtyThread类的main方法,也就是App的入口方法中,会为主线程准备一个Looper,如下代码所示:

1 //======ActivityTread======源码6.1
2 public static void main(String[] args) {
3       ......
4       Looper.prepareMainLooper();
5       ......
6 }

而在子线程中实例Handler的时候,总是需要显示调用Looper.prepare()方法来为当前线程生成一个Looper对象,以及通过Looper.myLooper()来得到自己线程的Looper来传递给Handler。

Looper中相关的关键源码如下:

 1 //==========Looper========源码6.2
 2 
 3 // sThreadLocal.get() will return null unless you've called prepare().
 4 static final ThreadLocal sThreadLocal = new ThreadLocal();
 5 private static Looper sMainLooper;
 6 
 7 /**
 8  * Initialize the current thread as a looper, marking it as an
 9  * application's main looper. The main looper for your application
10  * is created by the Android environment, so you should never need
11  * to call this function yourself.  See also: {@link #prepare()}
12  */
13 public static void prepareMainLooper() {
14     prepare(false);
15     synchronized (Looper.class) {
16         if (sMainLooper != null) {
17             throw new IllegalStateException("The main Looper has already been prepared.");
18         }
19         sMainLooper = myLooper();
20     }
21 }
22 
23 /**
24  * Return the Looper object associated with the current thread.  Returns
25  * null if the calling thread is not associated with a Looper.
26  */
27 public static @Nullable Looper myLooper() {
28     return sThreadLocal.get();
29 }
30 
31 /** Initialize the current thread as a looper.
32   * ......
33   */
34 public static void prepare() {
35     prepare(true);
36 }
37 private static void prepare(boolean quitAllowed) {
38     if (sThreadLocal.get() != null) {
39         throw new RuntimeException("Only one Looper may be created per thread");
40     }
41     sThreadLocal.set(new Looper(quitAllowed));
42 }
43 
44 /**
45  * Returns the application's main looper, which lives in the main thread of the application.
46  */
47 public static Looper getMainLooper() {
48     synchronized (Looper.class) {
49         return sMainLooper;
50     }
51 }

我们可以看到不少ThreadLocal的影子,Looper也正是通过ThreadLocal来为每个线程维护一份Looper实例的。通过我们前文的介绍,这里应该能够轻而易举理解其中的运作机制了吧,这里就再不啰嗦了。

 

7、实践是检验真理的唯一标准

        前面介绍了ThreadLocal提供的四个接口,以及详细讲解了它的工作原理。现在我们将实例3.1做一些修改,将各个接口的功能都包含进来,并稍微增加一点复杂度,如果能够看懂这个实例,就算是真的理解ThreadLocal了。

 1 //=========实例7.1=======
 2 private ThreadLocal mStrThreadLocal = new ThreadLocal() {
 3     @Override
 4     protected String initialValue() {
 5         Log.i("threadlocaldemo", "initialValue");
 6         return "initName";
 7     }
 8 };
 9 private ThreadLocal mLongThreadLocal = new ThreadLocal<>();
10 private void testThreadLocal() throws InterruptedException {
11     mStrThreadLocal.set("main-thread");
12     mLongThreadLocal.set(Thread.currentThread().getId());
13     Log.i("threadlocaldemo", "result-1:name=" + mStrThreadLocal.get() + ";id=" + mLongThreadLocal.get());
14     Thread thread_1 = new Thread() {
15         @Override
16         public void run() {
17             super.run();
18             mStrThreadLocal.set("thread_1");
19             mLongThreadLocal.set(Thread.currentThread().getId());
20             Log.i("threadlocaldemo", "result-2:name=" + mStrThreadLocal.get() + ";id=" + mLongThreadLocal.get());
21         }
22     };
23     thread_1.start();
24     //该句表示thread_1执行完后才会继续执行
25     thread_1.join();
26     Thread thread_2 = new Thread() {
27         @Override
28         public void run() {
29             super.run();
30             Log.i("threadlocaldemo", "result-3:name=" + mStrThreadLocal.get() + ";id=" + mLongThreadLocal.get());
31         }
32     };
33     thread_2.start();
34     //该句表示thread_2执行完后才会继续执行
35     thread_2.join();
36     mStrThreadLocal.remove();
37     Log.i("threadlocaldemo", "result-4:name=" + mStrThreadLocal.get() + ";id=" + mLongThreadLocal.get());
38 }

在主线程中运行该方法,执行结果为:

1 12-14 16:25:40.662 4844-4844/com.example.demos I/threadlocaldemo: result-1:name=main-thread;id=2
2 12-14 16:25:40.668 4844-5351/com.example.demos I/threadlocaldemo: result-2:name=thread_1;id=926
3 12-14 16:25:40.669 4844-5353/com.example.demos I/threadlocaldemo: initialValue
4 12-14 16:25:40.669 4844-5353/com.example.demos I/threadlocaldemo: result-3:name=initName;id=null
5 12-14 16:25:40.669 4844-4844/com.example.demos I/threadlocaldemo: initialValue
6 12-14 16:25:40.669 4844-4844/com.example.demos I/threadlocaldemo: result-4:name=initName;id=2

此时存在的数据结构为:

【朝花夕拾】Android多线程之(二)ThreadLocal篇_第5张图片

       对于这份log和数据结构图,这里就不再一一讲解了,如果前面都看懂了,这些都是小菜一碟。

 

结语

       对ThreadLocal的讲解这里就结束了,能读到这里,也足以说明你是人才,一定前途无量,祝你好运,早日走上人生巅峰!

       由于经验和水平有限,有描述不当或不准确的地方,还请不吝赐教,谢谢!

 

你可能感兴趣的:(【朝花夕拾】Android多线程之(二)ThreadLocal篇)