- 深度剖析伺服电机工作原理,选型技巧大放送
物联高科
单片机嵌入式硬件服务器运维网络
伺服电机作为自动化控制系统中的关键执行元件,广泛应用于机器人、数控机床、包装机械、印刷设备等领域。其精准的定位能力、稳定的运行性能和高效的响应速度使其在现代工业生产中扮演着不可替代的角色。一、伺服电机的工作原理:控制闭环的精妙艺术伺服电机之所以能实现精准控制,核心在于其闭环控制系统。简单来说,闭环控制系统会不断地将电机的实际运行状态反馈给控制器,控制器根据期望值与实际值的偏差进行调整,从而达到期望
- 如何管理需求边界
需求管理
在项目管理中,需求边界的有效控制对于确保交付质量和进度至关重要。清晰界定需求目标、维护需求优先级、动态跟踪和沟通、设立变更审查机制是管控需求边界的四大关键点。其中,动态跟踪和沟通尤为重要,通过定期同步、及时反馈和跨团队协同,能够使团队及时发现需求偏差并迅速做出决策,让项目在复杂多变的环境中保持灵活与稳定。以此为基础,项目经理可在每个里程碑节点审视需求完成度和资源分配,有效避免范围蔓延和需求冲突。一
- Python自动化识别与删除Excel表格空白行和列
Eiceblue
PythonXLSpython自动化excel开发语言
在处理Excel数据时,经常会遇到含有空白行和空白列的情况。这些空白区域不仅占用表格显示空间,还可能导致数据分析时出现偏差,影响数据处理的效率与结果的准确性,如空白行可能干扰数据聚合操作,导致统计计数不准确;空白列则可能误导数据解析逻辑,影响后续的数据分析流程。因此,删除Excel表格中的空白行和空白列也是数据预处理中的一项基础任务。本文将介绍如何利用Python来自动化识别并删除Excel文件中
- 在整个大模型LoRA微调中,哪些方法可以提升和优化模型训练后推理效果?
玩人工智能的辣条哥
人工智能人工智能LoRA微调
环境:LoRA微调问题描述:在整个大模型LoRA微调中,哪些方法可以提升和优化模型训练后推理效果?解决方案:在LoRA(Low-RankAdaptation)微调大模型后,提升和优化推理效果可以从以下多维度策略入手,涵盖数据、模型架构、训练策略和后处理技术等方面:1.数据优化数据质量与多样性确保微调数据覆盖目标场景的多样性,避免分布偏差。加入领域相关的高质量数据,清洗噪声数据(如重复、矛盾样本)。
- 基于粒子群算法的配电网重构:以IEEE33节点电网为例的潮流计算程序
mzyEPTzp
算法重构
基于粒子群算法的配电网重构基于IEEE33节点电网,以网损和电压偏差最小为目标,考虑系统的潮流约束,采用粒子群算法求解优化模型,得到确保放射型网架的配电网重构方案。这个程序主要是一个潮流计算程序,用于解决电力系统中的潮流问题。潮流计算是电力系统分析中的基本问题之一,它用于确定电力系统中各个节点的电压幅值和相位,以及各个支路的功率流动情况。该程序的主要思路是通过迭代的方式,不断修正节点的电压值,直到
- 深度学习:偏差和方差
壹十壹
深度学习深度学习人工智能python机器学习
偏差(Bias)偏差衡量了模型预测值的平均值与真实值之间的差距。换句话说,偏差描述了模型预测的准确度。一个高偏差的模型容易出现欠拟合,即模型无法捕捉数据中的真实关系,因为它对数据的特征做出了错误的假设。特征:高偏差的模型通常是过于简单的模型,无法对数据中的复杂关系进行准确建模。高偏差模型的训练误差和测试误差可能都较高。解决方法:增加模型复杂度:例如增加多项式的阶数、增加神经网络的层数等。使用更多的
- 2025精选VS经典:10款项目管理软件横评榜单
为什么90%的项目经理都在用错工具?深夜11点,项目经理李然盯着甘特图上交错的红色预警线,第6次推翻项目排期——这已是本季度因工具协作不畅导致的第3次交付延期。在敏捷开发成为主流的2025年,“工具选型偏差”正以每年23%的速度吞噬着企业效率(数据来源:PMI2025年行业报告)。作为操盘过金融、IT、制造业等全领域项目的战略官,我发现“工具适配度”比功能强大更重要。本文将用WBS(工作分解结构)
- 你还在 for 循环里使用 + 拼接字符串吗?
厦门在乎科技
文章java
引言都说StringBuilder在处理字符串拼接上效率要强于String,但有时候我们的理解可能会存在一定的偏差。最近我在测试数据导入效率的时候就发现我以前对StringBuilder的部分理解是错误的。后来我通过实践测试+找原理的方式搞清楚了这块的逻辑。现在将过程分享给大家测试用例我们的代码在循环中拼接字符串一般有两种情况第一种就是每次循环将对象中的几个字段拼接成一个新字段,再赋值给对象第二种
- 【人工智能】随机森林的智慧:集成学习的理论与实践
蒙娜丽宁
人工智能人工智能随机森林集成学习
随机森林(RandomForest)是一种强大的集成学习算法,通过构建多棵决策树并结合投票或平均预测提升模型性能。本文深入探讨了随机森林的理论基础,包括决策树的构建、Bagging方法和特征随机选择机制,并通过LaTeX公式推导其偏差-方差分解和误差分析。接着,我们详细描述了随机森林的算法流程,分析其在分类和回归任务中的适用性。文章还通过实验对比随机森林与单一决策树及其他算法(如SVM)的性能,探
- 搜广推校招面经四十
Y1nhl
搜广推面经机器学习搜索算法人工智能推荐算法算法
字节-广告算法一、离线AUC涨了,但AB实验没涨,可能的原因?1.1.线上线下得样本空间不一致(SSB)线上模型使用的是实时获取的点击、曝光数据。线下使用的离线数据。这可能导致数据分布存在偏差。线上数据受曝光机制、冷启动、新品推荐等因素影响,与离线数据不完全匹配。线下数据存在采样偏差1.2.AUC这些指标无法衡量线上打分准确性。AUC毕竟只是衡量排序1.2.1.引申:PCOC(预估值/真实后验概率
- DeepSeek时代:AI如何重塑软件开发的每个阶段,效率提升全解析
阿三0404
人工智能
在软件开发领域,时间就是竞争力。传统的瀑布模型和敏捷开发流程中,需求偏差、重复编码、测试遗漏等问题不断消耗团队精力。随着以DeepSeek为代表的AI技术突破,从需求分析到运维监控的每个环节都在发生效率革命。本文将深入解析AI在开发全流程中的具体应用,并通过真实数据揭示其带来的效率跃升。一、需求分析阶段:从模糊需求到精准拆解(效率提升65%)AI工具:自然语言处理(NLP)、需求图谱生成应用场景:
- 如何维护和应用高压隔离探头-Pintech品致
PinTech示波器探头
高频电流探头差分探头示波器科技
测量时使用者可以进入测试模式并调整偏置电压,如果探头在长期使用后失去平衡,将偏差压力调整到零;电子触摸按钮使用寿命更长;声光报警功能,可手动关闭声报警功能,更人性化USB电源方便灵活的电源接口;自动保存功能,防止用户停电后重复操作。高压隔离探头是一种具有浮动测量功能的探头,具有良好的共模噪声抑制能力、高输入阻抗、低输入电容、高速准确测量差异电压信号。可广泛应用于开关电源、变频器、电子镇流器、变频家
- 机器视觉3D线激光轮廓仪的精度为什么高
视觉人机器视觉
杂说3d机器人opencv人工智能视觉检测
3D激光轮廓仪的高精度源于其硬件设计、光学系统、软件算法及环境控制等多方面的协同优化,以下是具体原因的分点解析:激光光源的高性能单色性与方向性:激光具有极好的单色性和准直性,光束发散角小,能形成稳定的光斑,减少光路偏差。高稳定性:激光器输出功率和波长稳定,避免因光源波动导致的测量误差。短波长优势:部分激光采用短波长(如蓝光),可检测更微小的表面细节,提升分辨率。高分辨率传感器CMOS/CCD传感器
- (附源码)ssm基于WEB的房屋出租管理系统 毕业设计261620
Wx-bishekaifayuan
springbootmysqljavapythonphp
房屋出租管理系统的设计与实现摘要信息化社会内需要与之针对性的信息获取途径,但是途径的扩展基本上为人们所努力的方向,由于站在的角度存在偏差,人们经常能够获得不同类型信息,这也是技术最为难以攻克的课题。针对房屋出租管理等问题,对房屋出租管理进行研究分析,然后开发设计出房屋出租管理系统以解决问题。房屋出租管理系统主要功能模块包括用户管理、房屋资讯、资讯分类、房型管理、地区管理、房屋信息、租赁登记、租赁合
- DeepSeek 爆火,程序员的饭碗还能端稳吗?
这儿有一堆花
人工智能
核心观点速览AI不会淘汰程序员,但会淘汰「不会用AI」的程序员初级岗位需求锐减,但「AI+领域专家」岗位暴涨300%2024年成关键转折点,转型窗口期仅剩6-12个月一、DeepSeek实测:这些工作正在消失✅高危场景TOP3场景类型人类平均耗时DeepSeek处理耗时替代率基础CRUD开发4.2小时8分钟92%简单数据清洗3小时15分钟88%接口文档生成2小时3分钟95%⚠️幸存者案例“我们团队
- 反向传播(Backpropagation)直觉理解
忍者算法
算法机器学习人工智能深度学习
反向传播(Backpropagation)直觉理解1.为什么要有反向传播?想象你在练习投篮,目标是让篮球进框。但你一开始投的方向可能偏左、偏右,或者力道过大、过小。每次投篮后,你会观察球偏离篮筐的情况,并调整投篮方式,让下次投得更准。神经网络的学习过程就像练习投篮:投篮→神经网络做出预测观察偏差(进没进)→计算误差调整投篮方式→调整神经网络的参数但问题是:你怎么知道该往哪个方向调整?你怎么知道该调
- 学会用提问的方式沟通
西部驯兽师
项目管理职场和发展产品经理
在中国文化背景下,良好的沟通确实需要注重提问的智慧。以下从提问方式、角度分类和文化适配性三个维度,为您系统梳理提问的艺术:一、提问方法论的核心要素文化适配性原则关系前置:提问前建立信任(“王总,最近您团队的项目进展顺利吗?”)间接试探:“您觉得这个方案还有哪些需要完善的地方?”(替代直接批评)面子保护:“这个问题可能我理解有偏差,能否请您再说明下?”结构化提问框架提问目标信息类型事实数据观点态度解
- 一键找出PDF图纸差异项,【图纸对比】帮您解决!
CAD快速看图
pdf
在工程、设计、建筑等众多领域,PDF图纸是信息传递和项目实施的重要载体。当面临多个版本的PDF图纸或者不同来源的图纸时,进行有效的对比就显得至关重要。准确对比PDF图纸能帮助专业人士快速发现设计变更。无论是细微的尺寸调整,还是大规模的结构修改,及时察觉这些变化能确保项目按照最新的设计意图推进,避免因使用旧版本图纸而导致的施工错误或生产偏差。通过图纸对比,各方可以清晰了解各自负责部分的变动情况,加强
- 丹尼尔·卡尼曼《噪声》——读书笔记
阅读读书笔记思维
好久没有写博客了,趁着出差有时间,读完了《噪声》这本买了很久的书,整体感觉还是有一些认知层面的迭代的,也整理下书中的一些内容,让自己能够沉下心来把思维和逻辑整理清楚,也能给大家做个分享。书籍介绍这本书是已故诺贝尔经济学奖得主丹尼尔·卡尼曼的新书,之前就是在这位作者去世的时候买回来学习的。本书主要讲的是人类在判断过程中的一个常见“噪声”问题,由于人或者时间原因导致决策的随机性偏差。这本书通过对人类决
- 全方位解析:大语言模型评测方法的综合指南
大模型玩家
语言模型人工智能自然语言处理深度学习agi大模型搜索引擎
自2017年Transformer模型提出以来,自然语言处理研究逐步转向基于该框架的预训练模型,如BERT、GPT、BART和T5等。这些预训练模型与下游任务适配后,持续刷新最优结果。然而,现有评测方法存在广度和深度不足、数据偏差、忽视模型其他能力或属性评估等问题。因此,需要全面评测和深入研究模型的各项能力、属性、应用局限性、潜在风险及其可控性等。本文回顾了自然语言处理中的评测基准与指标,将大语言
- 怎样通过人机融合智能去除“机器幻觉”?
人机与认知实验室
人机融合智能的目标是通过深度结合人类智能和机器智能,解决现有人工智能系统(特别是深度学习模型,如各种大模型)可能出现的问题,比如“机器幻觉”现象。机器幻觉指的是人工智能模型在处理信息时,做出错误的、非理性的判断或预测,这种现象往往源于模型在训练数据中的偏差、不完全信息或过度依赖某些特定模式。通过人机融合的方式,可以有效减少这种“幻觉”,进而提升人机环境系统智能的可靠性和解释能力。1.结合人类的直觉
- 从机器幻觉到智能幻觉
人机与认知实验室
机器幻觉与智能幻觉主要是关于人工智能(AI)系统在处理信息和生成输出时,可能会产生的错误认知或“幻觉”现象。1.机器幻觉在早期的计算机科学中,“机器幻觉”通常指的是计算机在进行数据处理时,出现了错误的输出或意外的结果。这类“幻觉”并不是指计算机本身具有意识,而是因为程序的设计、数据的不完整性或噪声、或算法的偏差等问题,导致机器产生了不符合现实的假设、错误的结论或奇怪的输出,具体涉及:图像生成幻觉:
- python天气数据分析与处理,用python数据分析天气
2401_84504019
人工智能
本篇文章给大家谈谈python天气预报可视化分析报告,以及基于python的天气预测系统研究,希望对各位有所帮助,不要忘了收藏本站喔。基于大数据重庆市气象数据分析摘要信息化社会内需要与之针对性的信息获取途径,但是途径的扩展基本上为人们所努力的方向,由于站在的角度存在偏差,人们经常能够获得不同类型信息,这也是技术最为难以攻克的课题。针对气象数据等问题,对气象信息进行研究分析,然后开发设计出气象数据分
- 大数据SQL调优专题——调优切入
黄雪超
技术基础大数据sql数据仓库
引入我们都知道大数据的SQL优化,并非一蹴而就的简单任务,而是一个涉及多个环节的复杂过程。从需求提出到最终交付,任何一个环节的微小偏差都可能影响最终成果。虽然我们的专栏名字叫大数据SQL调优,但是实际调优并不是简单对SQL优化,而是一个涉及多个环节的复杂过程。实际上从需求接入到最终交付,任何一个环节的都可能影响最终成果。而调优的本质并非对任务进行大规模重构,而是通过各种监控工具,排查梳理出瓶颈点在
- 半精度 单精度 双精度 概述
石兴稳
大数据
单精度、半精度和双精度通常用于描述浮点数在计算机中的表示方式,它们在位数、表示范围、精度以及应用场景等方面存在差异,以下为你详细介绍:基本概念在计算机中,浮点数是一种用于表示实数的方式,由符号位、指数位和尾数位组成。不同的精度对应着不同的位数分配,从而影响到数的表示范围和精度。具体介绍精度类型位数符号位(S)指数位(E)尾数位(M)偏差值表示范围精度半精度(FP16)16位1位5位10位15大约到
- 为AI聊天工具添加一个知识系统 之104 详细设计之45 祖产代码 之3 量子态治理
一水鉴天
软件智能智能制造人工语言人工智能
本文要点要点祖传代码一、对“槽”的‘功能’理解(分析家)1、三种hoc槽的描述--元符号(用圆圈圈起来的®@©。“元符号”代表内建Type代理的模式和级别-内嵌内核图层(三级级联的套打页racket):消费者-生产者物理加工代理Broker模式,发布-订阅心理建设代理Agent模式,感知-行动生理构造Delegate代理模式)三种hoc槽:pro此前误会,ad此在偏差和post此后谬误(图grap
- 金钱与幸福
weixin_48445672
个人成长
人们普遍认为“金钱买不到幸福”这一观点,可能是由多种复杂因素共同作用导致的认知偏差。以下从心理学、社会文化、个体经验等角度分析可能的原因:一、心理学视角:幸福的边际效用递减基本需求满足后的阈值效应金钱在满足生存需求(食物、住房、医疗等)时对幸福感提升显著,但达到一定阈值后(如收入覆盖基本安全和舒适生活),其边际效用递减。研究表明,年收入超过约7.5万美元(因地而异)后,金钱对幸福的增益逐渐减弱。许
- 【深度学习】Adam优化器
九筠
机器学习深度学习人工智能
目录1什么是Adam1.1基本概念1.2Adam的数学理解1.2.1计算一阶矩估计(mean)1.2.2计算二阶矩估计(uncenteredvariance)1.2.3矫正一阶矩估计(mean)和二阶矩估计(uncenteredvariance)的偏差1.2.4更新模型参数1.3Adam的简单理解2Adam优化算法怎么用2.1导入所需的库和模块2.2定义模型和损失函数2.3定义优化器2.4在训练循
- 清华大学第5弹: 《DeepSeek与AI幻觉》 - 清华大学DeepSeek全套资料完整版 - 持续更新 - PDF免费下载
jiswordsman
人工智能pdf
由清华大学新闻与传播学院与人工智能学院双聘教授沈阳教授团队倾力打造的《DeepSeek与AI幻觉》,全面呈现,共计38页。《DeepSeek与AI幻觉》报告探讨了AI幻觉的成因、评测方法及其影响,并以DeepSeek模型为例,分析数据偏差、知识固化等问题如何导致幻觉现象。报告还提出缓解策略,如联网搜索、提示词优化,并探讨AI幻觉在科学创新和艺术创作中的潜在价值。点击链接免费下载《DeepSeek与
- 机器学习课程的常见章节结构
zhangfeng1133
机器学习分类学习
以下是机器学习课程的常见章节结构,结合了搜索结果中的信息:1.机器学习基础知识机器学习的定义与分类监督学习、无监督学习、半监督学习、强化学习机器学习的产生与发展机器学习的历史与现代应用经验误差与过拟合过拟合与欠拟合的概念及解决方案评估方法与性能度量交叉验证、准确率、召回率、F1分数等偏差与方差偏差-方差权衡及其对模型的影响2.经典机器学习算法2.1线性模型一元线性回归与多元线性回归梯度下降算法(批
- 矩阵求逆(JAVA)初等行变换
qiuwanchi
矩阵求逆(JAVA)
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(初等行变换)
* @author 邱万迟
*
- JDK timer
antlove
javajdkschedulecodetimer
1.java.util.Timer.schedule(TimerTask task, long delay):多长时间(毫秒)后执行任务
2.java.util.Timer.schedule(TimerTask task, Date time):设定某个时间执行任务
3.java.util.Timer.schedule(TimerTask task, long delay,longperiod
- JVM调优总结 -Xms -Xmx -Xmn -Xss
coder_xpf
jvm应用服务器
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx
- JDBC连接数据库
Array_06
jdbc
package Util;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBCUtil {
//完
- Unsupported major.minor version 51.0(jdk版本错误)
oloz
java
java.lang.UnsupportedClassVersionError: cn/support/cache/CacheType : Unsupported major.minor version 51.0 (unable to load class cn.support.cache.CacheType)
at org.apache.catalina.loader.WebappClassL
- 用多个线程处理1个List集合
362217990
多线程threadlist集合
昨天发了一个提问,启动5个线程将一个List中的内容,然后将5个线程的内容拼接起来,由于时间比较急迫,自己就写了一个Demo,希望对菜鸟有参考意义。。
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
public c
- JSP简单访问数据库
香水浓
sqlmysqljsp
学习使用javaBean,代码很烂,仅为留个脚印
public class DBHelper {
private String driverName;
private String url;
private String user;
private String password;
private Connection connection;
privat
- Flex4中使用组件添加柱状图、饼状图等图表
AdyZhang
Flex
1.添加一个最简单的柱状图
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
<?xml version=
"1.0"&n
- Android 5.0 - ProgressBar 进度条无法展示到按钮的前面
aijuans
android
在低于SDK < 21 的版本中,ProgressBar 可以展示到按钮前面,并且为之在按钮的中间,但是切换到android 5.0后进度条ProgressBar 展示顺序变化了,按钮再前面,ProgressBar 在后面了我的xml配置文件如下:
[html]
view plain
copy
<RelativeLa
- 查询汇总的sql
baalwolf
sql
select list.listname, list.createtime,listcount from dream_list as list , (select listid,count(listid) as listcount from dream_list_user group by listid order by count(
- Linux du命令和df命令区别
BigBird2012
linux
1,两者区别
du,disk usage,是通过搜索文件来计算每个文件的大小然后累加,du能看到的文件只是一些当前存在的,没有被删除的。他计算的大小就是当前他认为存在的所有文件大小的累加和。
- AngularJS中的$apply,用还是不用?
bijian1013
JavaScriptAngularJS$apply
在AngularJS开发中,何时应该调用$scope.$apply(),何时不应该调用。下面我们透彻地解释这个问题。
但是首先,让我们把$apply转换成一种简化的形式。
scope.$apply就像一个懒惰的工人。它需要按照命
- [Zookeeper学习笔记十]Zookeeper源代码分析之ClientCnxn数据序列化和反序列化
bit1129
zookeeper
ClientCnxn是Zookeeper客户端和Zookeeper服务器端进行通信和事件通知处理的主要类,它内部包含两个类,1. SendThread 2. EventThread, SendThread负责客户端和服务器端的数据通信,也包括事件信息的传输,EventThread主要在客户端回调注册的Watchers进行通知处理
ClientCnxn构造方法
&
- 【Java命令一】jmap
bit1129
Java命令
jmap命令的用法:
[hadoop@hadoop sbin]$ jmap
Usage:
jmap [option] <pid>
(to connect to running process)
jmap [option] <executable <core>
(to connect to a
- Apache 服务器安全防护及实战
ronin47
此文转自IBM.
Apache 服务简介
Web 服务器也称为 WWW 服务器或 HTTP 服务器 (HTTP Server),它是 Internet 上最常见也是使用最频繁的服务器之一,Web 服务器能够为用户提供网页浏览、论坛访问等等服务。
由于用户在通过 Web 浏览器访问信息资源的过程中,无须再关心一些技术性的细节,而且界面非常友好,因而 Web 在 Internet 上一推出就得到
- unity 3d实例化位置出现布置?
brotherlamp
unity教程unityunity资料unity视频unity自学
问:unity 3d实例化位置出现布置?
答:实例化的同时就可以指定被实例化的物体的位置,即 position
Instantiate (original : Object, position : Vector3, rotation : Quaternion) : Object
这样你不需要再用Transform.Position了,
如果你省略了第二个参数(
- 《重构,改善现有代码的设计》第八章 Duplicate Observed Data
bylijinnan
java重构
import java.awt.Color;
import java.awt.Container;
import java.awt.FlowLayout;
import java.awt.Label;
import java.awt.TextField;
import java.awt.event.FocusAdapter;
import java.awt.event.FocusE
- struts2更改struts.xml配置目录
chiangfai
struts.xml
struts2默认是读取classes目录下的配置文件,要更改配置文件目录,比如放在WEB-INF下,路径应该写成../struts.xml(非/WEB-INF/struts.xml)
web.xml文件修改如下:
<filter>
<filter-name>struts2</filter-name>
<filter-class&g
- redis做缓存时的一点优化
chenchao051
redishadooppipeline
最近集群上有个job,其中需要短时间内频繁访问缓存,大概7亿多次。我这边的缓存是使用redis来做的,问题就来了。
首先,redis中存的是普通kv,没有考虑使用hash等解结构,那么以为着这个job需要访问7亿多次redis,导致效率低,且出现很多redi
- mysql导出数据不输出标题行
daizj
mysql数据导出去掉第一行去掉标题
当想使用数据库中的某些数据,想将其导入到文件中,而想去掉第一行的标题是可以加上-N参数
如通过下面命令导出数据:
mysql -uuserName -ppasswd -hhost -Pport -Ddatabase -e " select * from tableName" > exportResult.txt
结果为:
studentid
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
先下载PHPEXCEL类文件,放在class目录下面,然后新建一个index.php文件,内容如下
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('
- 爱情格言
dcj3sjt126com
格言
1) I love you not because of who you are, but because of who I am when I am with you. 我爱你,不是因为你是一个怎样的人,而是因为我喜欢与你在一起时的感觉。 2) No man or woman is worth your tears, and the one who is, won‘t
- 转 Activity 详解——Activity文档翻译
e200702084
androidUIsqlite配置管理网络应用
activity 展现在用户面前的经常是全屏窗口,你也可以将 activity 作为浮动窗口来使用(使用设置了 windowIsFloating 的主题),或者嵌入到其他的 activity (使用 ActivityGroup )中。 当用户离开 activity 时你可以在 onPause() 进行相应的操作 。更重要的是,用户做的任何改变都应该在该点上提交 ( 经常提交到 ContentPro
- win7安装MongoDB服务
geeksun
mongodb
1. 下载MongoDB的windows版本:mongodb-win32-x86_64-2008plus-ssl-3.0.4.zip,Linux版本也在这里下载,下载地址: http://www.mongodb.org/downloads
2. 解压MongoDB在D:\server\mongodb, 在D:\server\mongodb下创建d
- Javascript魔法方法:__defineGetter__,__defineSetter__
hongtoushizi
js
转载自: http://www.blackglory.me/javascript-magic-method-definegetter-definesetter/
在javascript的类中,可以用defineGetter和defineSetter_控制成员变量的Get和Set行为
例如,在一个图书类中,我们自动为Book加上书名符号:
function Book(name){
- 错误的日期格式可能导致走nginx proxy cache时不能进行304响应
jinnianshilongnian
cache
昨天在整合某些系统的nginx配置时,出现了当使用nginx cache时无法返回304响应的情况,出问题的响应头: Content-Type:text/html; charset=gb2312 Date:Mon, 05 Jan 2015 01:58:05 GMT Expires:Mon , 05 Jan 15 02:03:00 GMT Last-Modified:Mon, 05
- 数据源架构模式之行数据入口
home198979
PHP架构行数据入口
注:看不懂的请勿踩,此文章非针对java,java爱好者可直接略过。
一、概念
行数据入口(Row Data Gateway):充当数据源中单条记录入口的对象,每行一个实例。
二、简单实现行数据入口
为了方便理解,还是先简单实现:
<?php
/**
* 行数据入口类
*/
class OrderGateway {
/*定义元数
- Linux各个目录的作用及内容
pda158
linux脚本
1)根目录“/” 根目录位于目录结构的最顶层,用斜线(/)表示,类似于
Windows
操作系统的“C:\“,包含Fedora操作系统中所有的目录和文件。 2)/bin /bin 目录又称为二进制目录,包含了那些供系统管理员和普通用户使用的重要
linux命令的二进制映像。该目录存放的内容包括各种可执行文件,还有某些可执行文件的符号连接。常用的命令有:cp、d
- ubuntu12.04上编译openjdk7
ol_beta
HotSpotjvmjdkOpenJDK
获取源码
从openjdk代码仓库获取(比较慢)
安装mercurial Mercurial是一个版本管理工具。 sudo apt-get install mercurial
将以下内容添加到$HOME/.hgrc文件中,如果没有则自己创建一个: [extensions] forest=/home/lichengwu/hgforest-crew/forest.py fe
- 将数据库字段转换成设计文档所需的字段
vipbooks
设计模式工作正则表达式
哈哈,出差这么久终于回来了,回家的感觉真好!
PowerDesigner的物理数据库一出来,设计文档中要改的字段就多得不计其数,如果要把PowerDesigner中的字段一个个Copy到设计文档中,那将会是一件非常痛苦的事情。