java并发编程学习之CyclicBarrier这边提到了单机应用的Barrier,在分布式系统中,curator也实现了分布式Barrier。curator提供了DistributedBarrier和DistributedDoubleBarrier两种方式。
DistributedBarrier
MyDistributedBarrie
public class MyDistributedBarrier {
private static final String path = "/barrier";
static DistributedBarrier distributedBarrier;
public static void distributedBarrier() throws Exception {
for (int i = 0; i < 5; i++) {
new Thread(new Runnable() {
@Override
public void run() {
CuratorFramework client = CuratorConnect.getCuratorClient2();
distributedBarrier = new DistributedBarrier(client,path);
try {
distributedBarrier.setBarrier();
System.out.println("准备中");
distributedBarrier.waitOnBarrier();
System.out.println("结束了");
} catch (Exception e) {
e.printStackTrace();
}
}
}).start();
}
TimeUnit.SECONDS.sleep(5);
distributedBarrier.removeBarrier();
}
public static void main(String[] args) throws Exception {
MyDistributedBarrier.distributedBarrier();
}
}
源码分析
大致流程:
- 新增节点,如果已经新增了,就忽略
- 监听节点,自旋判断节点是否被删除,如果被删除,则跳出循环
setBarrier,新增节点
public synchronized void setBarrier() throws Exception
{
try
{
client.create().creatingParentContainersIfNeeded().forPath(barrierPath);
}
catch ( KeeperException.NodeExistsException ignore )
{
// ignore
}
}
waitOnBarrier
public synchronized void waitOnBarrier() throws Exception
{
waitOnBarrier(-1, null);
}
public synchronized boolean waitOnBarrier(long maxWait, TimeUnit unit) throws Exception
{
long startMs = System.currentTimeMillis();
boolean hasMaxWait = (unit != null);
long maxWaitMs = hasMaxWait ? TimeUnit.MILLISECONDS.convert(maxWait, unit) : Long.MAX\_VALUE;
boolean result;
for(;;)
{
// 如果result为空,跳出循环,说明节点被删除了。没有为空,就继续监听
result = (client.checkExists().usingWatcher(watcher).forPath(barrierPath) == null);
if ( result )
{
break;
}
// 休眠,等待唤醒
if ( hasMaxWait )
{
long elapsed = System.currentTimeMillis() - startMs;
long thisWaitMs = maxWaitMs - elapsed;
if ( thisWaitMs <= 0 )
{
break;
}
wait(thisWaitMs);
}
else
{
wait();
}
}
return result;
}
removeBarrier
删除节点,这个时候,会触发监听,唤醒waitOnBarrier的等待。
public synchronized void removeBarrier() throws Exception
{
try
{
client.delete().forPath(barrierPath);
}
catch ( KeeperException.NoNodeException ignore )
{
// ignore
}
}
DistributedDoubleBarrier
MyDistributedDoubleBarrier
public class MyDistributedDoubleBarrier {
private static final String path = "double_barrier";
public static void distributedDoubleBarrier() throws Exception {
for (int i = 0; i < 5; i++) {
new Thread(new Runnable() {
@Override
public void run() {
CuratorFramework client = CuratorConnect.getCuratorClient2();
DistributedDoubleBarrier doubleBarrier = new DistributedDoubleBarrier(client,path,5);
try {
System.out.println("准备中");
doubleBarrier.enter();
System.out.println("开始了");
doubleBarrier.leave();
System.out.println("结束了");
} catch (Exception e) {
e.printStackTrace();
}
}
}).start();
}
}
public static void main(String[] args) throws Exception {
MyDistributedDoubleBarrier.distributedDoubleBarrier();
}
}
源码分析
enter
主要思路就是在一个节点下面,创建预定数量的子节点,当子节点数量不超过预定节点时就堵塞,直到满足。
大概流程:
- 判断ready节点是否存在,如果存在,说明子节点数量已经够了,就不用创建ready节点。
- 如果不存在,则自旋判断,是否节点数量超过预定数量,没有则休眠,有则跳出循环
public void enter() throws Exception
{
enter(-1, null);
}
public boolean enter(long maxWait, TimeUnit unit) throws Exception
{
long startMs = System.currentTimeMillis();
boolean hasMaxWait = (unit != null);
long maxWaitMs = hasMaxWait ? TimeUnit.MILLISECONDS.convert(maxWait, unit) : Long.MAX_VALUE;
// 判断ready节点是否存在
boolean readyPathExists = (client.checkExists().usingWatcher(watcher).forPath(readyPath) != null);
// 创建临时节点
client.create().creatingParentContainersIfNeeded().withMode(CreateMode.EPHEMERAL).forPath(ourPath);
// 如果ready节点存在,就返回true,不存在调用internalEnter
boolean result = (readyPathExists || internalEnter(startMs, hasMaxWait, maxWaitMs));
if ( connectionLost.get() )
{
throw new KeeperException.ConnectionLossException();
}
return result;
}
private synchronized boolean internalEnter(long startMs, boolean hasMaxWait, long maxWaitMs) throws Exception
{
boolean result = true;
do
{
// 获取子节点的信息
List children = getChildrenForEntering();
// 判断是否已经创建够子节点数量了
int count = (children != null) ? children.size() : 0;
if ( count >= memberQty )
{
try
{
//创建够了,则创建ready节点
client.create().forPath(readyPath);
}
catch ( KeeperException.NodeExistsException ignore )
{
// ignore
}
break;
}
// 没创建够,休眠等待唤醒
if ( hasMaxWait && !hasBeenNotified.get() )
{
long elapsed = System.currentTimeMillis() - startMs;
long thisWaitMs = maxWaitMs - elapsed;
if ( thisWaitMs <= 0 )
{
result = false;
}
else
{
wait(thisWaitMs);
}
if ( !hasBeenNotified.get() )
{
result = false;
}
}
else
{
wait();
}
} while ( false );
return result;
}
leave
主要思路,就是子节点删除完之前堵塞,删除完了再删除ready节点。
大概流程:
- 自旋
- 获取子节点信息
- 过滤掉ready节点,并排序
- 如果子节点数量为0,说明已经删除完,则跳出循环
- 获取当前节点的位置,如果是子节点就剩下一个,并且就是当前节点,则删除跳出循环
- 如果子节点不止一个,看当前节点的位置,如果是第一个,就监听最高节点,如果不是第一个,就监听第一个节点,并且把自己节点删除,进入休眠等到唤醒。这样的话,就是除了第一个节点,其他的节点都会删除。最高节点的删除会触发第一个节点的唤醒事件,继续判断是否只有一个节点,是到5的步骤。删除完后,不是第一个节点的其他节点,跳到4的步骤
- 删除ready节点。
public synchronized void leave() throws Exception
{
leave(-1, null);
}
public synchronized boolean leave(long maxWait, TimeUnit unit) throws Exception
{
long startMs = System.currentTimeMillis();
boolean hasMaxWait = (unit != null);
long maxWaitMs = hasMaxWait ? TimeUnit.MILLISECONDS.convert(maxWait, unit) : Long.MAX_VALUE;
return internalLeave(startMs, hasMaxWait, maxWaitMs);
}
private boolean internalLeave(long startMs, boolean hasMaxWait, long maxWaitMs) throws Exception
{
String ourPathName = ZKPaths.getNodeFromPath(ourPath);
boolean ourNodeShouldExist = true;
boolean result = true;
for(;;)
{
if ( connectionLost.get() )
{
throw new KeeperException.ConnectionLossException();
}
List children;
try
{
// 获取节点信息
children = client.getChildren().forPath(barrierPath);
}
catch ( KeeperException.NoNodeException dummy )
{
children = Lists.newArrayList();
}
// 过滤ready节点并排序
children = filterAndSortChildren(children);
// 已经没有子节点了,则跳出循环
if ( (children == null) || (children.size() == 0) )
{
break;
}
// 当前节点的位置
int ourIndex = children.indexOf(ourPathName);
// 小于0,说明当前节点不在子节点里,抛异常
if ( (ourIndex < 0) && ourNodeShouldExist )
{
if ( connectionLost.get() )
{
break; // connection was lost but we've reconnected. However, our ephemeral node is gone
}
else
{
throw new IllegalStateException(String.format("Our path (%s) is missing", ourPathName));
}
}
// 节点数量为1,判断是否是当前节点,是的话则删除
if ( children.size() == 1 )
{
if ( ourNodeShouldExist && !children.get(0).equals(ourPathName) )
{
throw new IllegalStateException(String.format("Last path (%s) is not ours (%s)", children.get(0), ourPathName));
}
checkDeleteOurPath(ourNodeShouldExist);
break;
}
Stat stat;
boolean IsLowestNode = (ourIndex == 0);
// 当前节点是最小的,则监听最大节点是否被删除
if ( IsLowestNode )
{
String highestNodePath = ZKPaths.makePath(barrierPath, children.get(children.size() - 1));
stat = client.checkExists().usingWatcher(watcher).forPath(highestNodePath);
}
else
{
// 不是最小的,则监听最小节点是否被删除
String lowestNodePath = ZKPaths.makePath(barrierPath, children.get(0));
stat = client.checkExists().usingWatcher(watcher).forPath(lowestNodePath);
// 删除自己的节点
checkDeleteOurPath(ourNodeShouldExist);
ourNodeShouldExist = false;
}
// 休眠等唤醒
if ( stat != null )
{
if ( hasMaxWait )
{
long elapsed = System.currentTimeMillis() - startMs;
long thisWaitMs = maxWaitMs - elapsed;
if ( thisWaitMs <= 0 )
{
result = false;
}
else
{
wait(thisWaitMs);
}
}
else
{
wait();
}
}
}
try
{
client.delete().forPath(readyPath);
}
catch ( KeeperException.NoNodeException ignore )
{
// ignore
}
return result;
}