Android系统层Watchdog机制源码分析

Android系统层Watchdog机制源码分析_第1张图片

一:为什么需要看门狗?

Watchdog,初次见到这个词语是在大学的单片机书上, 谈到了看门狗定时器. 在很早以前那个单片机刚发展的时候, 单片机容易受到外界工作影响, 导致自己的程序跑飞, 因此有了看门狗的保护机制, 即:需要每多少时间内都去喂狗, 如果不喂狗, 看门狗将触发重启. 大体原理是, 在系统运行以后启动了看门狗的计数器,看门狗就开始自动计数,如果到了一定的时间还不去清看门狗,那么看门狗计数器就会溢出从而引起看门狗中断,造成系统复位。

而手机, 其实是一个超强超强的单片机, 其运行速度比单片机快N倍, 存储空间比单片机大N倍, 里面运行了若干个线程, 各种软硬件协同工作, 不怕一万,就怕万一, 万一我们的系统死锁了, 万一我们的手机也受到很大的干扰程序跑飞了. 都可能发生jj思密达的事情, 因此, 我们也需要看门狗机制.

二:Android系统层看门狗

看门狗有硬件看门狗和软件看门狗之分, 硬件就是单片机那种的定时器电路, 软件, 则是我们自己实现一个类似机制的看门狗.Android系统为了保证系统的稳定性,也设计了这么一个看门狗,其为了保证各种系统服务能够正常工作,要监控很多的服务,并且在核心服务异常时要进行重启,还要保存现场。

接下来我们就看看Android系统的Watchdog是怎么设计的。

注:本文以Android6.0代码讲解

Android系统的Watchdog源码路径在此:
frameworks/base/services/core/java/com/android/server/Watchdog.java

Watchdog的初始化位于SystemServer.
/frameworks/base/services/java/com/android/server/SystemServer.java

在SystemServer中会对Watchdog进行初始化。

492            Slog.i(TAG, "Init Watchdog");
493            final Watchdog watchdog = Watchdog.getInstance();
494            watchdog.init(context, mActivityManagerService);

此时Watchdog会走如下初始化方法,先是构造方法,再是init方法:

216    private Watchdog() {
217        super("watchdog");
218        // Initialize handler checkers for each common thread we want to check.  Note
219        // that we are not currently checking the background thread, since it can
220        // potentially hold longer running operations with no guarantees about the timeliness
221        // of operations there.
222
223        // The shared foreground thread is the main checker.  It is where we
224        // will also dispatch monitor checks and do other work.
225        mMonitorChecker = new HandlerChecker(FgThread.getHandler(),
226                "foreground thread", DEFAULT_TIMEOUT);
227        mHandlerCheckers.add(mMonitorChecker);
228        // Add checker for main thread.  We only do a quick check since there
229        // can be UI running on the thread.
230        mHandlerCheckers.add(new HandlerChecker(new Handler(Looper.getMainLooper()),
231                "main thread", DEFAULT_TIMEOUT));
232        // Add checker for shared UI thread.
233        mHandlerCheckers.add(new HandlerChecker(UiThread.getHandler(),
234                "ui thread", DEFAULT_TIMEOUT));
235        // And also check IO thread.
236        mHandlerCheckers.add(new HandlerChecker(IoThread.getHandler(),
237                "i/o thread", DEFAULT_TIMEOUT));
238        // And the display thread.
239        mHandlerCheckers.add(new HandlerChecker(DisplayThread.getHandler(),
240                "display thread", DEFAULT_TIMEOUT));
241
242        // Initialize monitor for Binder threads.
243        addMonitor(new BinderThreadMonitor());
244    }

246    public void init(Context context, ActivityManagerService activity) {
247        mResolver = context.getContentResolver();
248        mActivity = activity;
249        // 注册重启广播
250        context.registerReceiver(new RebootRequestReceiver(),
251                new IntentFilter(Intent.ACTION_REBOOT),
252                android.Manifest.permission.REBOOT, null);
253    }

但是我们看了源码会知道,Watchdog这个类继承于Thread,所以还会需要一个启动的地方,就是下面这行代码,这是在ActivityManagerService的SystemReady接口中干的。

Watchdog.getInstance().start();

TAG: HandlerChecker

上面的代码中有个比较重要的类,HandlerChecker,这是Watchdog用来检测主线程,io线程,显示线程,UI线程的机制,代码也不长,直接贴出来吧。其原理就是通过各个Handler的looper的MessageQueue来判断该线程是否卡住了。当然,该线程是运行在SystemServer进程中的线程。

public final class HandlerChecker implements Runnable {
88        private final Handler mHandler;
89        private final String mName;
90        private final long mWaitMax;
91        private final ArrayList mMonitors = new ArrayList();
92        private boolean mCompleted;
93        private Monitor mCurrentMonitor;
94        private long mStartTime;
95
96        HandlerChecker(Handler handler, String name, long waitMaxMillis) {
97            mHandler = handler;
98            mName = name;
99            mWaitMax = waitMaxMillis;
100            mCompleted = true;
101        }
102
103        public void addMonitor(Monitor monitor) {
104            mMonitors.add(monitor);
105        }
106        // 记录当前的开始时间
107        public void scheduleCheckLocked() {
108            if (mMonitors.size() == 0 && mHandler.getLooper().getQueue().isPolling()) {
109                // If the target looper has recently been polling, then
110                // there is no reason to enqueue our checker on it since that
111                // is as good as it not being deadlocked.  This avoid having
112                // to do a context switch to check the thread.  Note that we
113                // only do this if mCheckReboot is false and we have no
114                // monitors, since those would need to be executed at this point.
115                mCompleted = true;
116                return;
117            }
118
119            if (!mCompleted) {
120                // we already have a check in flight, so no need
121                return;
122            }
123
124            mCompleted = false;
125            mCurrentMonitor = null;
126            mStartTime = SystemClock.uptimeMillis();
127            mHandler.postAtFrontOfQueue(this);
128        }
129
130        public boolean isOverdueLocked() {
131            return (!mCompleted) && (SystemClock.uptimeMillis() > mStartTime + mWaitMax);
132        }
133        // 获取完成时间标识
134        public int getCompletionStateLocked() {
135            if (mCompleted) {
136                return COMPLETED;
137            } else {
138                long latency = SystemClock.uptimeMillis() - mStartTime;
139                if (latency < mWaitMax/2) {
140                    return WAITING;
141                } else if (latency < mWaitMax) {
142                    return WAITED_HALF;
143                }
144            }
145            return OVERDUE;
146        }
147
148        public Thread getThread() {
149            return mHandler.getLooper().getThread();
150        }
151
152        public String getName() {
153            return mName;
154        }
155
156        public String describeBlockedStateLocked() {
157            if (mCurrentMonitor == null) {
158                return "Blocked in handler on " + mName + " (" + getThread().getName() + ")";
159            } else {
160                return "Blocked in monitor " + mCurrentMonitor.getClass().getName()
161                        + " on " + mName + " (" + getThread().getName() + ")";
162            }
163        }
164
165        @Override
166        public void run() {
167            final int size = mMonitors.size();
168            for (int i = 0 ; i < size ; i++) {
169                synchronized (Watchdog.this) {
170                    mCurrentMonitor = mMonitors.get(i);
171                }
172                mCurrentMonitor.monitor();
173            }
174
175            synchronized (Watchdog.this) {
176                mCompleted = true;
177                mCurrentMonitor = null;
178            }
179        }
180    }

通过上面的代码,我们可以看到一个核心的方法是

mHandler.getLooper().getQueue().isPolling()

这个方法的实现在MessageQueue中,我将代码贴出来,我们可以看到上面的注释写到:返回当前的looper线程是否在polling工作来做,这个是个很好的用于检测loop是否存活的方法。我们从HandlerChecker源码可以看到,如果looper这个返回true,将会直接返回。

139    /**
140     * Returns whether this looper's thread is currently polling for more work to do.
141     * This is a good signal that the loop is still alive rather than being stuck
142     * handling a callback.  Note that this method is intrinsically racy, since the
143     * state of the loop can change before you get the result back.
144     *
145     * 

This method is safe to call from any thread. 146 * 147 * @return True if the looper is currently polling for events. 148 * @hide 149 */ 150 public boolean isPolling() { 151 synchronized (this) { 152 return isPollingLocked(); 153 } 154 } 155

若没有返回true,表明looper当前正在工作,会post一下自己,同时将mComplete置为false,标明已经发出一个消息正在等待处理。如果当前的looper没有阻塞,那很快,将会调用到自己的run方法。

自己的run方法干了什么呢。干的是TAG: HandlerChecker源码里面的166行,里面对自己的Monitors遍历并进行monitor。(注:此处的monitor下面会讲到),若有monitor发生了阻塞,那么mComplete会一直是false。

那么在系统检测调用这个获取完成状态时,就会进入else里面,进行了时间的计算,并返回相应的时间状态码。

133        // 获取完成时间标识
134        public int getCompletionStateLocked() {
135            if (mCompleted) {
136                return COMPLETED;
137            } else {
138                long latency = SystemClock.uptimeMillis() - mStartTime;
139                if (latency < mWaitMax/2) {
140                    return WAITING;
141                } else if (latency < mWaitMax) {
142                    return WAITED_HALF;
143                }
144            }
145            return OVERDUE;
146        }

好了,到这我们已经知道是怎么判断线程是否卡住的了

  1. MessageQueue.isPolling
  2. Monitor.monitor

TAG:Monitor

204    public interface Monitor {
205        void monitor();
206    }

Monitor是一个接口,实现这个接口的类有好几个。比如:如下我搜出来的结果


Android系统层Watchdog机制源码分析_第2张图片

看,有这么多的类实现了该接口,而且我们都不用去猜,就可以知道,他们一定会注册到这个Watchdog中。注册到哪的呢,下面代码可以看到。

225        mMonitorChecker = new HandlerChecker(FgThread.getHandler(),
226                "foreground thread", DEFAULT_TIMEOUT);
227        mHandlerCheckers.add(mMonitorChecker);

275    public void addMonitor(Monitor monitor) {
276        synchronized (this) {
277            if (isAlive()) {
278                throw new RuntimeException("Monitors can't be added once the Watchdog is running");
279            }
280            mMonitorChecker.addMonitor(monitor);
281        }
282    }

所以各个实现这个接口的类,只需要调一下,上述接口就行了。我们看一下ActivityManagerService类的调法。路径在此,点击可以进入。
/frameworks/base/services/core/java/com/android/server/am/ActivityManagerService.java

2381        Watchdog.getInstance().addMonitor(this);

19655    /** In this method we try to acquire our lock to make sure that we have not deadlocked */
19656    public void monitor() {
19657        synchronized (this) { }
19658    }

可以看到,我们的AMS实现了该接口,并在2381行,将自己注册进Watchdog. 同时其monitor方法只是同步一下自己,确保自己没有死锁。
干的事情虽然不多,但这足够了。足够让外部通过这个方法得到AMS是否死了。

好了,现在我们知道是如何判断其他服务是否死锁了,那么看Watchdog的run方法是怎么完成这一套机制的吧。

TAG: Watchdog.run

run方法就是死循环,不断的去遍历所有HandlerChecker,并调其监控方法,等待三十秒,评估状态。具体见下面的注释:

341    @Override
342    public void run() {
343        boolean waitedHalf = false;
344        while (true) {
345            final ArrayList blockedCheckers;
346            final String subject;
347            final boolean allowRestart;
348            int debuggerWasConnected = 0;
349            synchronized (this) {
350                long timeout = CHECK_INTERVAL;
351                // Make sure we (re)spin the checkers that have become idle within
352                // this wait-and-check interval
                   // 在这里,我们遍历所有HandlerChecker,并调其监控方法,记录开始时间
353                for (int i=0; i 0) {
359                    debuggerWasConnected--;
360                }
361
362                // NOTE: We use uptimeMillis() here because we do not want to increment the time we
363                // wait while asleep. If the device is asleep then the thing that we are waiting
364                // to timeout on is asleep as well and won't have a chance to run, causing a false
365                // positive on when to kill things.
366                long start = SystemClock.uptimeMillis();
                   // 等待30秒,使用uptimeMills是为了不把手机睡眠时间算进入,手机睡眠时系统服务同样睡眠
367                while (timeout > 0) {
368                    if (Debug.isDebuggerConnected()) {
369                        debuggerWasConnected = 2;
370                    }
371                    try {
372                        wait(timeout);
373                    } catch (InterruptedException e) {
374                        Log.wtf(TAG, e);
375                    }
376                    if (Debug.isDebuggerConnected()) {
377                        debuggerWasConnected = 2;
378                    }
379                    timeout = CHECK_INTERVAL - (SystemClock.uptimeMillis() - start);
380                }
381                // 评估Checker的状态,里面会遍历所有的HandlerChecker,并获取最大的返回值。
382                final int waitState = evaluateCheckerCompletionLocked();
                   // 最大的返回值有四种情况,分别是:COMPLETED对应消息已处理完毕线程无阻塞
383                if (waitState == COMPLETED) {
384                    // The monitors have returned; reset
385                    waitedHalf = false;
386                    continue;
                   // WAITING对应消息处理花费0~29秒,继续运行
387                } else if (waitState == WAITING) {
388                    // still waiting but within their configured intervals; back off and recheck
389                    continue;
                   // WAITED_HALF对应消息处理花费30~59秒,线程可能已经被阻塞,需要保存当前AMS堆栈状态
390                } else if (waitState == WAITED_HALF) {
391                    if (!waitedHalf) {
392                        // We've waited half the deadlock-detection interval.  Pull a stack
393                        // trace and wait another half.
394                        ArrayList pids = new ArrayList();
395                        pids.add(Process.myPid());
396                        ActivityManagerService.dumpStackTraces(true, pids, null, null,
397                                NATIVE_STACKS_OF_INTEREST);
398                        waitedHalf = true;
399                    }
400                    continue;
401                }
402                //OVERDUE对应消息处理已经花费超过60, 能够走到这里,说明已经发生了超时60秒了。那么下面接下来全是应对超时的情况
403                // something is overdue!
404                blockedCheckers = getBlockedCheckersLocked();
405                subject = describeCheckersLocked(blockedCheckers);
406                allowRestart = mAllowRestart;
407            }
408
409            // If we got here, that means that the system is most likely hung.
410            // First collect stack traces from all threads of the system process.
411            // Then kill this process so that the system will restart.
412            EventLog.writeEvent(EventLogTags.WATCHDOG, subject);
413
               .......各种记录的保存
468
469            // Only kill the process if the debugger is not attached.
470            if (Debug.isDebuggerConnected()) {
471                debuggerWasConnected = 2;
472            }
473            if (debuggerWasConnected >= 2) {
474                Slog.w(TAG, "Debugger connected: Watchdog is *not* killing the system process");
475            } else if (debuggerWasConnected > 0) {
476                Slog.w(TAG, "Debugger was connected: Watchdog is *not* killing the system process");
477            } else if (!allowRestart) {
478                Slog.w(TAG, "Restart not allowed: Watchdog is *not* killing the system process");
479            } else {
480                Slog.w(TAG, "*** WATCHDOG KILLING SYSTEM PROCESS: " + subject);
481                for (int i=0; i

上述可以看到, 如果走到412行处。便是重启系统前的准备了。
会进行以下事情:

  1. 写Eventlog
  2. 以追加的方式,输出system_server和3个native进程的栈信息
  3. 输出kernel栈信息
  4. dump所有阻塞线程
  5. 输出dropbox信息
  6. 判断有没有debuger,没有的话,重启系统了,并输出log: *** WATCHDOG KILLING SYSTEM PROCESS:

三:总结:

以上便是Android系统层Watchdog的原理了。设计的比较好。若由我来设计,我还真想不到使用Monitor那个锁机制来判断。

接下来总结以下:

  1. Watchdog是一个线程,用来监听系统各项服务是否正常运行,没有发生死锁
  2. HandlerChecker用来检查Handler以及monitor
  3. monitor通过锁来判断是否死锁
  4. 超时30秒会输出log,超时60秒会重启(debug情况除外)

本文作者:Anderson/Jerey_Jobs

博客地址 : http://jerey.cn/
地址 : Anderson大码渣
github地址 : https://github.com/Jerey-Jobs

你可能感兴趣的:(Android系统层Watchdog机制源码分析)