传送门
题意:
一开始有很多怪兽,每个怪兽的血量在\(1\)到\(n\)之间且各不相同,\(n\leq 10^{13}\)。
然后有\(m\)种没有出现的血量,\(m\leq 50\)。
现在有个人可以使用魔法卡片,使用一张会使得所有的怪兽掉一点血,如果有怪兽死亡,则继续施展魔法。
这个人能够获得一定的分数,分数计算如下,每一次使用卡片前,假设一个怪兽血量为\(x\),那么获得\(x^k\)的分数。\(k\)为杀死所有怪兽需要的卡片数量。
求最后总的分数。
思路:
因为\(m\)很小,那么我们可以对每次施展卡片前获得的分数单独计算,最后加起来即可。
那么这个问题的本质就是要算:
\[ \sum_{i=0}^ni^k-\sum_{j=1}^ma_j^k \]
后面一部分显然可以直接计算,那么主要问题就在于计算前面的部分。
而幂级数的形式可以直接用第二类斯特林数展开,最后问题就变为了预处理第二类斯特林数,计算可以直接\(O(k)\)计算。
展开过程详见:传送门。
当然,这显然为一个与\(n\)有关的\(k+1\)次多项式,拉格朗日插值搞一搞就行。
当然,还有许多其它的方法,太菜了还不会...
斯特林数:
/*
* Author: heyuhhh
* Created Time: 2019/12/14 11:00:17
*/
#include
#include
#include
#include
#include
#include
#include
拉格朗日插值:
#include
using namespace std;
typedef long long ll;
const int N = 55, MOD = 1e9 + 7;
int T;
ll a[N], fac[N];
ll qp(ll A, ll B) {
ll ans = 1;
while(B) {
if(B & 1) ans = ans * A % MOD;
A = A * A % MOD;
B >>= 1;
}
return ans ;
}
void add(ll &x, ll y, ll z) {
x += z * y % MOD;
x %= MOD;
if(x < 0) x += MOD;
}
void mul(ll &x, ll y) {
x *= y;
x %= MOD;
if(x < 0) x += MOD;
}
ll calc(ll n, ll m) {
ll ans = 0;
if(n <= m + 2) {
for(int i = 1; i <= n; i++) add(ans, qp(i, m), 1) ;
return ans ;
}
ll g = 1, y = 0;
for(int i = 1; i <= m + 2; i++) mul(g, n - i);
for(int i = 1; i <= m + 2; i++) {
ll t = qp(fac[i - 1] * fac[m + 2 - i] % MOD, MOD - 2) ;
if((m + 2 - i) & 1) t = -t;
add(y, qp(i, m), 1);
ll tmp = qp(n - i, MOD - 2);
mul(tmp, t * y % MOD * g % MOD) ;
add(ans, tmp, 1);
}
return ans;
}
int main() {
ios::sync_with_stdio(false); cin.tie(0);
fac[0] = 1;
for(int i = 1; i < N; i++) fac[i] = fac[i - 1] * i % MOD ;
cin >> T;
while(T--) {
int n, m;
cin >> n >> m;
for(int i = 1; i <= m; i++) cin >> a[i];
sort(a + 1, a + m + 1) ;
ll ans = 0;
for(int i = 0; i <= m; i++) {
add(ans, calc(n - a[i], m + 1), 1);
for(int j = i + 1; j <= m; j++)
add(ans, qp(a[j] - a[i], m + 1), -1) ;
}
cout << ans << '\n';
}
return 0;
}