【主席树启发式合并】【P3302】[SDOI2013]森林

Description

给定一个 \(n\) 个节点的森林,有 \(Q\) 次操作,每次要么将森林中某两点联通,保证操作后还是个森林,要么查询两点间权值第 \(k\) 小,保证两点联通。强制在线。

Limitation

\(1~\leq~n,~Q~\leq~80000\)

Solution

考虑有连边还有查询链上第 \(k\) 大,于是要么用 LCT,要么用主席树。

考虑如果用 LCT 的话,并不能快速的维护两点间链的信息(其实感觉在access的时候乱搞一下有希望在多一个 \(\log\) 的代价下维护一颗权值线段树的,但是没有仔细想 ),但是如果使用主席树,在连边的时候可以考虑启发式合并,可以以多一个 \(\log\) 为代价快速合并两个森林。

其实这种合并森林信息的,大概一共就只有 LCT 和启发式合并两种做法吧……

与此类似的在一棵树上合并子树信息的大概只有启发式合并和静态树上链分治两种做法叭……当然不排除有毒瘤题把这个强行转化成子树和父节点连边然后用 LCT 做……启发式合并的例子比如[十二省联考2019]春节十二响,静态树上链分治的例子比如 [CF600E]Lomsat gelral。

于是使用主席树维护每个节点到根的权值线段树即可快速查询链上第 \(k\) 大,在合并森林的时候进行启发式合并。注意到用主席树求链上第 \(k\) 大需要用到两点间 LCA,对于 LCA 的维护可以启发式合并两个森林的倍增数组。合并次数是 \(O(\log n)\) 级别的,每次合并是 \(O(n \log n)\) 的,于是合并总复杂度 \(O(n \log^2 n)\),另外查询复杂度 \(O(q~\log n)\)。所以总的复杂度为 \(O(n~\log^2 n~+~q~\log n)\)。写起来也非常好写,相比于 [HNOI2016]树

Code

#include 
#include 
#include 
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif

typedef long long int ll;

namespace IPT {
  const int L = 1000000;
  char buf[L], *front=buf, *end=buf;
  char GetChar() {
    if (front == end) {
      end = buf + fread(front = buf, 1, L, stdin);
      if (front == end) return -1;
    }
    return *(front++);
  }
}

template 
inline void qr(T &x) {
  char ch = IPT::GetChar(), lst = ' ';
  while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
  while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
  if (lst == '-') x = -x;
}

namespace OPT {
  char buf[120];
}

template 
inline void qw(T x, const char aft, const bool pt) {
  if (x < 0) {x = -x, putchar('-');}
  int top=0;
  do {OPT::buf[++top] = static_cast(x % 10 + '0');} while (x /= 10);
  while (top) putchar(OPT::buf[top--]);
  if (pt) putchar(aft);
}

const int maxn = 80005;

int lstans, n, m, t;
int ufs[maxn], sz[maxn], MU[maxn], tmp[maxn], anc[18][maxn], depth[maxn];
bool vis[maxn];

struct Tree {
  Tree *ls, *rs;
  int l, r, v;

  ~Tree() {
    if (this->ls) {
      delete this->ls;
      delete this->rs;
    }
  }

  Tree() : ls(NULL), rs(NULL), l(0), r(0), v(0) {}
};
Tree *rot[maxn];

struct Edge {
  int v;
  Edge *nxt;

  Edge(const int _v, Edge *h) : v(_v), nxt(h) {}
};
Edge *hd[maxn];
void cont(const int u, const int v) {
  hd[u] = new Edge(v, hd[u]);
  hd[v] = new Edge(u, hd[v]);
}

void init_hash();
int find(const int x);
int GetLCA(int u, int v);
void dfs(const int u, const int rt);
void build(Tree *u, Tree *pre, const int v);
void buildzero(Tree *u, const int l, const int r);
int query(const Tree *const u, const Tree *const v, const Tree *const x, const Tree *const y, const int k);

int main() {
  freopen("1.in", "r", stdin);
  qr(lstans); lstans = 0;
  qr(n); qr(m); qr(t);
  for (int i = 1; i <= n; ++i) {
    qr(MU[i]);
  }
  init_hash();
  buildzero(rot[0] = new Tree, 1, n);
  for (int i = 1, u, v; i <= m; ++i) {
    u = v = 0; qr(u); qr(v);
    cont(u, v);
  }
  for (int i = 1; i <= n; ++i) if (!vis[i]) {
    dfs(i, i);
  }
  int a, b, c;
  while (t--) {
    char op;
    do op = IPT::GetChar(); while ((op != 'Q') && (op != 'L'));
    if (op == 'Q') {
      a = b = c = 0; qr(a); qr(b); qr(c);
      a ^= lstans; b ^= lstans; c ^= lstans;
      int k = GetLCA(a, b);
      qw(lstans = tmp[query(rot[a], rot[b], rot[k], rot[anc[0][k]], c)], '\n', true);
    } else {
      a = b = 0; qr(a); qr(b);
      a ^= lstans; b ^= lstans;
      int fa = find(a), fb = find(b);
      if (sz[fa] > sz[fb]) {
        std::swap(a, b);
        std::swap(fa, fb);
      }
      sz[fb] += sz[fa];
      anc[0][a] = b;
      dfs(a, fb);
      cont(a, b);
    }
  }
  return 0;
}

void dfs(const int u, const int rt) {
  vis[u] = true;
  sz[u] = 1; ufs[u] = rt;
  depth[u] = depth[anc[0][u]] + 1;
  build(rot[u] = new Tree, rot[anc[0][u]], MU[u]);
  for (int i = 0; i < 17; ++i) {
    anc[i + 1][u] = anc[i][anc[i][u]];
  }
  for (auto e = hd[u]; e; e = e->nxt) if (e->v != anc[0][u]) {
    anc[0][e->v] = u;
    dfs(e->v, rt);
    sz[u] += sz[e->v];
  }
}

void init_hash() {
  memcpy(tmp + 1, MU + 1, n << 2);
  std::sort(tmp + 1, tmp + 1 + n);
  auto ed = std::unique(tmp + 1, tmp + 1 + n);
  for (int i = 1; i <= n; ++i) {
    MU[i] = std::lower_bound(tmp + 1, ed, MU[i]) - tmp;
  }
}

void buildzero(Tree *u, const int l, const int r) {
  if ((u->l = l) == (u->r = r)) return;
  int mid = (l + r) >> 1;
  buildzero(u->ls = new Tree, l, mid); buildzero(u->rs = new Tree, mid + 1, r);
}

void build(Tree *u, Tree *pre, const int v) {
  *u = *pre; ++u->v;
  if (u->l == u->r) return;
  if (u->ls->r >= v) {
    build(u->ls = new Tree, pre->ls, v);
  } else {
    build(u->rs = new Tree, pre->rs, v);
  }
}

int GetLCA(int u, int v) {
  if (depth[u] > depth[v]) {
    std::swap(u, v);
  }
  int delta = depth[v] - depth[u];
  for (int i = 17; delta; --i) if (delta >= (1 << i)) {
    delta -= 1 << i;
    v = anc[i][v];
  }
  if (u == v) return u;
  for (int i = 17; ~i; --i) if (anc[i][u] != anc[i][v]) {
    u = anc[i][u]; v = anc[i][v];
  }
  return anc[0][v];
}

int query(const Tree *const u, const Tree *const v, const Tree *const x, const Tree *const y, const int k) {
  if (u->l == u->r) return u->l;
  int lv = u->ls->v + v->ls->v - x->ls->v - y->ls->v;
  if (lv >= k) {
    return query(u->ls, v->ls, x->ls, y->ls, k);
  } else {
    return query(u->rs, v->rs, x->rs, y->rs, k - lv);
  }
}

inline int find(const int x) {
  return ufs[x] == x ? x : ufs[x];
}

Summary

其实这种合并森林信息的,大概一共就只有 LCT 和启发式合并两种做法吧……

与此类似的在一棵树上合并子树信息的大概只有启发式合并和静态树上链分治两种做法叭……

后面想到会再更新的

你可能感兴趣的:(【主席树启发式合并】【P3302】[SDOI2013]森林)