- LeetCode解决方案集:编程与面试技能提升
徐子贡
本文还有配套的精品资源,点击获取简介:LeetCode是一个编程训练平台,提供了大量编程题目,用于提升开发者的算法技能和面试准备。本文将探讨名为"some-leetcode-solutions"的开源项目,其中包括LeetCode问题的多种编程语言解决方案。这些解决方案由社区成员贡献,可用于学习不同思路和比较语言实现。开源项目遵循开源协议,允许自由使用和修改代码,鼓励知识共享。本文还强调了学习算法
- Python库 - transformers
司南锤
PYTHON库python机器学习python开发语言
transformers库是由HuggingFace开发的一个非常流行的Python库,用于自然语言处理(NLP)任务。它提供了大量的预训练模型,这些模型可以用于各种NLP任务,如文本分类、问答、翻译、摘要生成等。以下是关于transformers库的详细介绍:1.主要特点预训练模型:transformers库包含了多种预训练的语言模型,如BERT、GPT、T5、XLNet等。这些模型在大规模文本
- conda更换环境版本(比如torch版本)
挨打且不服66
pythonpython
找到想要的torch版本pytorch官网torch过往的版本创建新环境condacreate--namemyenvpython=3.8condaactivatemyenvconda虚拟环境中安装CUDA和CUDNN深度学习用显卡训练的时候,需要安装与显卡对应的cuda和cudnn。但不同的项目所支持的pytorch版本是不一样的,而pytorch版本和cuda版本之间又是互相依赖的,所以如果可以
- 流行编程语言全解析:优势、应用与短板
a小胡哦
pythonjavac++c语言javascriptswiftr语言
Python:优势Python以其简洁、易读的语法闻名,新手能快速上手。丰富的库和框架,能极大地提高开发效率。适用领域数据科学与分析:处理和分析大规模数据集,进行数据可视化。典型示例:Google用Python进行数据分析,处理海量数据以支持各种业务决策。机器学习与人工智能:构建和训练模型。典型示例:OpenAI在很多人工智能项目中广泛使用Python,如GPT系列模型的研发。网络爬虫:轻松从网页
- LLaMA系列大模型调研与整理-llama-alpaca-lora
AI大模型-大飞
llamaAI大模型AI职场和发展人工智能
文章目录LLaMA大模型及其衍生模型1.LLaMA2.stanford_alpaca3.ChatDoctor4.alpaca-lora5.Chinese-LLaMA-Alpaca6.BELLE大模型综述ASurveyofLargeLanguageModels关键词:大模型,LLaMA,Alpaca,Lora,Belle,模型训练,模型微调,指令微调最近尝试在领域数据进行生成式大模型的再训练和微调,
- deepseek和ChatGPT 4o比较
调皮的芋头
chatgpt人工智能
DeepSeek和ChatGPT4o在实现方式、评测效果和使用体验方面的详细比较:实现方式:DeepSeek:推理型大模型DeepSeek的核心是推理型大模型,与指令型大模型不同,它不需要用户提供详细的步骤指令,而是通过理解用户的真实需求和场景来提供答案。后训练+RL/RLHFDeepSeekR1等推理模型是在通用模型的基础上进行“特训”(后训练+SFT/RL/RLHF),使其不仅知道得多还用得好
- 采用分布式部署deepseek
慧香一格
AI学习分布式deepseek
分布式部署DeepSeek涉及使用多个计算节点来加速模型训练或提升推理效率。下面是一个基本的指南,帮助您了解如何进行分布式部署。1.环境准备硬件需求:确保您的集群环境中有足够的GPU资源,并且所有机器之间可以通过高速网络互联。软件依赖:安装必要的库和工具,如PyTorch、Transformers等。特别地,对于分布式训练,还需要安装torch.distributed或者类似的库支持,例如Horo
- 《Ollama 与 DeepSeek 整合应用入门指南》一、二、三章
Allen-Steven
ollamadeepseek
第一章:工具概述与核心价值1.1Ollama技术解析本地化部署优势:无需网络连接的数据隐私保护跨平台架构设计:支持Windows/macOS/Linux全平台模型管理引擎:自动化处理模型依赖与版本控制1.2DeepSeek模型特性多模态处理能力:文本生成、代码理解、数学推理中文优化架构:针对中文语料的特殊训练策略模型家族图谱:从1.3B到67B的参数规模选择1.3技术整合价值本地智能计算:企业数据
- 【JAVA工程师从0开始学AI】,第四步:闭包与高阶函数——用Python的“魔法函数“重构Java思维
架构默片
JAVA工程师从0开始学AI人工智能javapython
副标题:当严谨的Java遇上"七十二变"的Python函数式编程历经变量战争、语法迷雾、函数对决,此刻我们将踏入Python最迷人的领域——函数式编程。当Java工程师还在用接口和匿名类实现回调时,Python的闭包已化身"智能机器人",带着"记忆传承"的能力自由穿梭于代码之间。这里没有类的枷锁,函数既是武器又是盾牌,高阶函数组合出的"代码万花筒",正是AI数据处理、模型训练的核心密码。本文将用J
- 腾讯云大模型知识引擎×DeepSeek赋能文旅
繁依Fanyi
python
腾讯云大模型知识引擎×DeepSeek赋能文旅——以合肥文旅为例的技术革新与实践路径一、技术底座:知识引擎与DeepSeek的融合逻辑腾讯云大模型知识引擎与DeepSeek模型的结合,本质上是**“知识库+检索增强生成(RAG)+实时联网能力”**的技术框架升级。通过三步调用API接口,开发者可快速搭建基于DeepSeek的文旅智能应用。其核心优势包括:动态知识更新:突破传统大模型预训练数据的时间
- huggingface/pytorch-image-models
GarryLau
ML&DLpytorchpythonhuggingface
huggingface/pytorch-image-models1.使用技巧1.1.训练指令单卡:pythontrain.py--pretrained--input-size3224224--mean000--std111--batch-size128--validation-batch-size128--color-jitter-prob0.2--grayscale-prob0.2--gauss
- PyTorch `.pth` 转 ONNX:从模型训练到跨平台部署
MO__YE
人工智能
PyTorch.pth转ONNX:从模型训练到跨平台部署在深度学习里,模型的格式决定了它的可用性。如果你是PyTorch用户,你可能熟悉.pth文件,它用于存储训练好的模型。但当你想在不同的环境(如TensorRT、OpenVINO、ONNXRuntime)部署模型时,.pth可能并不适用。这时,ONNX(OpenNeuralNetworkExchange)就必不可少。本文目录:什么是.pth文件
- 什么是Scaling Laws(缩放定律);DeepSeek的Scaling Laws
ZhangJiQun&MXP
教学2024大模型以及算力2021论文人工智能自然语言处理神经网络语言模型深度学习
什么是ScalingLaws(缩放定律)ScalingLaws(缩放定律)在人工智能尤其是深度学习领域具有重要意义,以下是相关介绍及示例:定义与内涵ScalingLaws主要描述了深度学习模型在规模(如模型参数数量、训练数据量、计算资源等)不断扩大时,模型性能与这些规模因素之间的定量关系。它表明,在一定条件下,模型的性能会随着模型规模的增加而以某种可预测的方式提升,通常表现为模型的损失函数值随模型
- 智能算力中心万卡GPU集群架构深度解析
科技互联人生
科技数码人工智能人工智能gpu算力硬件架构
智能算力中心万卡GPU集群架构深度分析 自ChatGPT发布,科技界大模型竞赛如火如荼。数据成新生产要素,算力成新基础能源,大模型成新生产工具,“AI+”转型势不可挡。模型参数量突破万亿,对算力需求升级,超万卡集群成基建竞赛标配。超万卡集群缩短训练时间,加速迭代,助力市场趋势应对。在超万卡集群中,高效稳定地训练大模型面临双重挑战:确保集群算力最大化、网
- PyTorch `.pth` 转 ONNX:从模型训练到跨平台部署
MO__YE
pytorch人工智能python
PyTorch.pth转ONNX:从模型训练到跨平台部署在深度学习里,模型的格式决定了它的可用性。如果你是PyTorch用户,你可能熟悉.pth文件,它用于存储训练好的模型。但当你想在不同的环境(如TensorRT、OpenVINO、ONNXRuntime)部署模型时,.pth可能并不适用。这时,ONNX(OpenNeuralNetworkExchange)就必不可少。本文目录:什么是.pth文件
- 如何训练LLM“思考”(像o1和DeepSeek-R1一样, 高级推理模型解析
果冻人工智能
AI员工人工智能chatgpt深度学习
2024年9月,OpenAI发布了它的o1模型,该模型基于大规模强化学习训练,赋予了它“高级推理”能力。不幸的是,他们是如何做到这一点的细节从未被公开披露。然而,今天,DeepSeek(一个AI研究实验室)成功复现了这种推理行为,并公开了他们方法的完整技术细节。在这篇文章中,我将讨论这一创新背后的关键思想,并描述它们在底层是如何运作的。一台会思考的笔记本电脑OpenAI的o1模型标志着训练大语言模
- 商汤绝影端到端自动驾驶的迭代优化
AGI大模型与大数据研究院
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
自动驾驶,端到端,迭代优化,深度学习,感知,规划,控制,模型训练,数据增强,模型微调1.背景介绍随着人工智能和计算机视觉技术的飞速发展,自动驾驶汽车从科幻走进了现实。商汤科技推出的绝影端到端自动驾驶系统,就是其中的佼佼者。本文将深入剖析商汤绝影端到端自动驾驶系统的迭代优化过程,帮助读者理解其背后的技术原理和架构设计。2.核心概念与联系商汤绝影端到端自动驾驶系统的核心架构如下:graphLRA[感知
- 1分钟彻底搞懂“高内聚,低耦合”
jmlinux
C语言方法算法stm32嵌入式硬件单片机
目录1.高内聚低耦合:2.生活类比理解耦合与内聚2.1高内聚情况2.2高耦合情况2.3低耦合情况3.程序开发中耦合的影响3.1高内聚示例3.2低耦合示例1.高内聚低耦合:一句话说明,每个模块只管自己的事,并且尽量不依赖其他模块。两句话说明,具体一点:高内聚:一个模块集中做好一件事,所有相关的代码都在一起。低耦合:不同模块之间的联系尽量少,修改一个模块不会影响其他模块。2.生活类比理解耦合与内聚我们
- 2. 从HuggingFace下载千问模型、数据、微调并运行
ApiChain
gpt大模型语言模型人工智能python
视频链接(1)3.从HuggingFace下载千问模型、数据、微调并运行(上)_哔哩哔哩_bilibili在本课程中,我们将带你下载并本地运行一个大模型,进行模型的微调训练等,视频播放量525、弹幕量0、点赞数4、投硬币枚数2、收藏人数11、转发人数2,视频作者jiangliuer3264,作者简介,相关视频:3.从HuggingFace下载千问模型、数据、微调并运行(下),6.租赁GPU服务器并
- 解剖DeepSeek四把刀,一场深到源码,大到行业,细到人心盛宴
leluckys
AI大模型AI编程
在拆解DeepSeek源码后,会发现几个颠覆行业认知的真相。这个号称“用十分之一算力吊打GPT-4”的国产大模型,藏着令人拍案叫绝的工程智慧,却也暗藏致命软肋。第一刀:切开开源表象,DeepSeek确实把代码仓库甩上了GitHub,但这套开源策略藏着精妙算计。他们公开的是经过蒸馏的“成品模型”,而非原始训练框架:就像给你组装好的乐高战舰,却藏起了设计图纸。这种半开放式开源既能吸引开发者构建生态,又
- Java面试宝典:说下Spring Bean的生命周期?
熊文豪
Java面试宝典java面试springSpringBeanBeanBean的生命周期
Java面试宝典专栏范围:JAVA基础,面向对象编程(OOP),异常处理,集合框架,JavaI/O,多线程编程,设计模式,网络编程,框架和工具等全方位面试题详解每日更新Java面试宝典专栏:Java面试宝典感兴趣的可以先收藏起来,大家在遇到JAVA面试题等相关问题都可以给我留言咨询,希望帮助更多的人回答重点实例化:Spring容器根据配置文件或注解实例化Bean对象。属性注入:Spring将依赖(
- 家里WiFi信号差,如何解决?
xiaoweids
web电脑
转自:微点阅读https://www.weidianyuedu.com现在,大家都离不开WiFi了,到亲戚朋友家串个门第一件事也是连WiFi,连得多了,相信大家心中都会有个疑惑:为啥WiFi信号总是这么差?一般情况下,在室内环境中,我们手机接收到的WiFi信号主要是反射、绕射、漫射和穿透这四种效应的叠加。后三种效应都和信号的频率关系很大,频率越高绕射和穿透的能力越差。总的来说,木头、玻璃这些障碍物
- SFT(监督微调)和RLHF(基于人类反馈的强化学习)的区别
钟小宇
LLM人工智能语言模型
SFT(监督微调)和RLHF(基于人类反馈的强化学习)的区别STF(SupervisedFine-Tuning)和RLHF(ReinforcementLearningfromHumanFeedback)是两种不同的模型训练方法,分别用于不同的阶段和目的。以下是它们的主要区别:1.方法概述STF(监督微调):定义:STF是指在已经预训练好的模型基础上,使用标注好的数据进一步训练模型,使其在特定任务上
- 【机器学习】半监督和无监督极限学习机SS-US-ELM附Matlab代码
默默科研仔
粉丝福利机器学习人工智能
标题:【机器学习】半监督和无监督极限学习机SS-US-ELM附Matlab代码一、引言1.1研究背景和意义概述研究的背景以及该研究在领域内的重要性。1.2研究现状分析当前领域的研究进展和存在的问题。二、极限学习机(ELM)基本原理2.1ELM的基本模型描述ELM的基本模型结构和工作原理。2.2ELM的学习过程介绍ELM的学习算法和训练过程。三、半监督极限学习机(SS-ELM)3.1SS-ELM的提
- DeepSeek为什么超越了OpenAI
deepseek
DeepSeek的超越源于四大关键差异:技术架构的垂直整合优势、数据策略的动态闭环设计、商业模式的场景化落地能力、行业定位的差异化突围。其中,技术架构的突破最具革命性——DeepSeek创造性地采用"混合专家系统+领域预训练"架构,在特定领域的推理效率比OpenAI的GPT-4提升40%以上(根据2023年MLPerch基准测试)。这种技术路线选择,使其在医疗诊断、工业质检等垂直场景的准确率达到9
- DeepSeek的训练与优化流程
程序猿000001号
DeepSeek训练优化
DeepSeek的训练与优化流程一、数据工程体系1.多模态数据融合处理动态数据湖架构:实时摄入互联网文本、科学论文、专利文献、传感器数据等20+数据源日均处理原始数据量达1.2PB,支持200+文件格式自动解析智能清洗流水线:基于大模型的语义去重算法,重复数据识别准确率99.6%创新应用对抗网络生成噪声数据,增强模型鲁棒性专利级数据质量评估体系(DQAS3.0)包含87个质量维度2.知识增强处理结
- 2025【修复版】红娘金媒10.3.1婚恋相亲系统源码+PC+微信小程序+抖音小程序+公众号+接入三端+安装教程
百创科技
源码与教程源码下载小程序微信小程序
1.红娘服务红娘服务模块是该系统的一大特色。专业红娘会通过分析用户的个人资料和偏好,为用户提供精准的配对建议和个性化服务。用户可以预约红娘服务,通过红娘的介入,提升配对成功率。2.相亲活动相亲活动模块用于组织和管理线下或线上相亲活动。用户可以报名参加系统组织的各类相亲活动,通过集体活动认识更多异性。系统会发布活动信息,审核报名用户,并向报名成功的用户推送活动通知和后续反馈。3.交友匹配交友匹配模块
- 机器学习基本篇
胖胖的小肥猫
机器学习
1基本概念机器学习,分为回归,分类,聚类,降维有监督学习回归,分类,有特征,有标签,进行训练,然后对新数据进行预测无监督学习聚类,降维。题目越多,训练越好,2基本流程数据预处理——模型训练与评估可以优化为获取数据——数据预处理——EDA分析——特征工程——模型训练——可解释性分析2.0数据获取利用kaggle,天池等平台的开源数据,2.1预处理目的:让数据更符合逻辑让数据更容易计算借助函数实现变换
- deepseek本地部署后做微调训练实现智能对话的一些建议
慧香一格
AI学习deepseek服务器AI
在本地部署大模型后,进行微调和训练以实现智能对话,通常需要按照以下步骤操作。以下是详细的指导内容:1.准备数据集在微调大模型之前,需要准备适合的训练数据集。数据集应满足以下要求:格式:通常使用JSONL(JSONLines)格式,每行包含一个训练样本。内容:数据应包含对话的上下文和目标输出,例如:{"context":"你好!今天天气不错。","response":"是的,天气很好,适合出去走走。
- 功率半导体展聚焦 APSME 2025,共探功率半导体发展新征程
JSZNZZ
制造信息与通信可用性测试
在科技迭代的滚滚浪潮中,功率半导体作为现代工业的“心脏”,其重要性愈发凸显。2025年11月20-22日,APSME2025亚洲国际功率半导体、材料及装备技术展览会将在广州保利世贸博览馆隆重举办,这不仅是一场行业的年度盛事,更是功率半导体领域迈向未来的关键契机。近年来,功率半导体凭借其独特优势,在众多领域发挥着核心作用。在新能源汽车领域,功率半导体是实现电能高效转换的关键,直接影响着汽车的续航里程
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/