CF662C Binary Table
一道 FWT 的板子…比较难想就是了
有一个 \(n\) 行 \(m\) 列的表格,每个元素都是 \(0/1\),每次操作可以选择一行或一列,把 \(0/1\) 翻转,即把 \(0\) 换为 \(1\) ,把 \(1\) 换为 \(0\) 。请问经过若干次操作后,表格中最少有多少个 \(1\)。
\(1 \leq n \leq 20\)
\(1 \leq m \leq 10^5\)
先说说 FWT 干嘛的吧
\(F_k = \sum_{i \oplus j=k} a_i * b_j\)
首先呢 这题其实是有个暴力做法的
(认为是 n 行 m 列的一个矩阵)
复杂度大概是 \(2^n * m\)
就是你暴力搞 \(n\) 枚举每个状态复杂度自然是 \(2^n\) 的 然后你每次搜索/状压 搞到一个地方之后 算当前列的 0/1 个数取 \(min\) 因为列是可以翻转的…
暴力做法 没了 但是这种做法在CF里并不给分所以没啥用
但是对以下的做题有大用处
你可以把最开始矩阵 \(m\) 列状压 \(n\) 这样就成了个二进制
然后 \(a\) 数组计数
\(b_i\) 数组表示 i 的 0的个数,1的个数取 min
然后如果对矩阵变换也可以表示成状态 那么就是最开始的状态 \(i \oplus k\)
然而可以发现
\(i\oplus j=k\) 可以变成 \(i\oplus k=j\)
然后 FWT 还是可以用的
直接跑板子
因为你最开始变换的是 \(k\) 最后要枚举取个 \(min\) 求最优解
这题没了…
#include
#define int long long
#define rep(a , b , c) for(int a = b ; a <= c ; ++ a)
#define Rep(a , b , c) for(int a = b ; a >= c ; -- a)
#define go(u) for(int i = G.head[u] , v = G.to[i] , w = G.dis[i] ; i ; v = G.to[i = G.nxt[i]] , w = G.dis[i])
using namespace std ;
using ll = long long ;
using pii = pair < int , int > ;
using vi = vector < int > ;
int read() {
int x = 0 ; bool f = 1 ; char c = getchar() ;
while(c < 48 || c > 57) { if(c == '-') f = 0 ; c = getchar() ; }
while(c > 47 && c < 58) { x = (x << 1) + (x << 3) + (c & 15) ; c = getchar() ; }
return f ? x : -x ;
}
template void print(T x , char c = '\n') {
static char st[100] ; int stp = 0 ;
if(! x) { putchar('0') ; }
if(x < 0) { x = -x ; putchar('-') ; }
while(x) { st[++ stp] = x % 10 ^ 48 ; x /= 10 ; }
while(stp) { putchar(st[stp --]) ; } putchar(c) ;
}
template void cmax(T & x , T y) { x < y ? x = y : 0 ; }
template void cmin(T & x , T y) { x > y ? x = y : 0 ; }
const int _N = 1e6 + 10 ;
struct Group {
int head[_N] , nxt[_N << 1] , to[_N] , dis[_N] , cnt = 1 ;
Group () { memset(head , 0 , sizeof(head)) ; }
void add(int u , int v , int w = 1) { nxt[++ cnt] = head[u] ; to[cnt] = v ; dis[cnt] = w ; head[u] = cnt ; }
} ;
const int N = 1 << 21 ;
typedef int arr[N] ;
int n , m ;
void FWT(int * a) {
for(int d = 1 ; d <= n - 1 ; d <<= 1) {
for(int i = 0 ; i <= n - 1 ; i += (d << 1))
rep(j , 0 , d - 1) {
int x = a[i + j] , y = a[i + j + d] ;
a[i + j] = x + y ;
a[i + j + d] = x - y ;
}
}
}
void IFWT(int * a) {
for(int d = 1 ; d <= n - 1 ; d <<= 1) {
for(int i = 0 ; i <= n - 1 ; i += (d << 1))
rep(j , 0 , d - 1) {
int x = a[i + j] , y = a[i + j + d] ;
a[i + j] = x + y >> 1 ;
a[i + j + d] = x - y >> 1 ;
}
}
}
int digit() {
char c = getchar() ;
while(! (c >= 48 && c <= 57)) c = getchar() ;
if(c == 49) return 1 ;
return 0 ;
}
arr a , b , f , g , cnt ;
signed main() {
n = read() ; m = read() ;
rep(i , 0 , n - 1) {
rep(j , 0 , m - 1) {
if(digit())
g[j] |= (1 << i) ;
}
}
rep(i , 0 , m - 1) a[g[i]] ++ ;
int nn = n ;
n = 1 << n ;
rep(i , 1 , n - 1) cnt[i] = cnt[i >> 1] + (i & 1) ;
rep(i , 0 , n - 1) b[i] = min(cnt[i] , nn - cnt[i]) ;
FWT(a) ; FWT(b) ;
rep(i , 0 , n - 1) a[i] *= b[i] ;
IFWT(a) ;
ll ans = 1e18 ;
rep(i , 0 , n - 1) ans = min(ans , a[i]) ;
print(ans) ;
return 0 ;
}