pandas基础操作

```python
import pandas as pd
import numpy as np
```

```python
s = pd.Series([1,3,6,np.nan,44,1])
s
------------
0 1.0
1 3.0
2 6.0
3 NaN
4 44.0
5 1.0
dtype: float64

```

```python
dates = pd.date_range('20191217',periods=6)
dates
------------
DatetimeIndex(['2019-12-17', '2019-12-18', '2019-12-19', '2019-12-20',
'2019-12-21', '2019-12-22'],
dtype='datetime64[ns]', freq='D')
```

```python
df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=['a','b','c','d'])
df
-----------------
a    b    c    d
2019-12-17    -0.148546    -0.693356    0.121830    -0.373264
2019-12-18    1.120692    1.023919    1.860231    -0.604606
2019-12-19    0.628022    -1.118451    2.173190    -1.822923
2019-12-20    0.133966    -1.366570    1.076824    0.395217
2019-12-21    1.433090    -1.166129    1.398020    0.118124
2019-12-22    0.707654    1.716963    -2.136076    0.758152
```

```python
dates = pd.date_range('20191217',periods=6)
df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates,columns=['A','B','C','D'])
df
----------------------------
A    B    C    D
2019-12-17    0    1    2    3
2019-12-18    4    5    6    7
2019-12-19    8    9    10    11
2019-12-20    12    13    14    15
2019-12-21    16    17    18    19
2019-12-22    20    21    22    23
```

```python
print(df['A'])
2019-12-17 0
2019-12-18 4
2019-12-19 8
2019-12-20 12
2019-12-21 16
2019-12-22 20
Freq: D, Name: A, dtype: int32
```

```python
print(df[0:3])
-----------------------
A B C D
2019-12-17 0 1 2 3
2019-12-18 4 5 6 7
2019-12-19 8 9 10 11
```

```python
print(df.loc['2019-12-17'])
----------------------
A 0
B 1
C 2
D 3
Name: 2019-12-17 00:00:00, dtype: int32
```

```python
print(df.loc[:,['A','B']])
-------------------------
A B
2019-12-17 0 1
2019-12-18 4 5
2019-12-19 8 9
2019-12-20 12 13
2019-12-21 16 17
2019-12-22 20 21
```

```python
print(df.iloc[3])
----------------------
A 12
B 13
C 14
D 15
Name: 2019-12-20 00:00:00, dtype: int32
```

```python
print(df.iloc[3,1])
---------------
13
```

```python
print(df.iloc[3:5,1:3])
---------------------
B C
2019-12-20 13 14
2019-12-21 17 18
```

```python
print(df.iloc[[1,3,5],1:3])
-----------------------
B C
2019-12-18 5 6
2019-12-20 13 14
2019-12-22 21 22
```

```python
print(df[df.A>8])
------------------
A B C D
2019-12-20 12 13 14 15
2019-12-21 16 17 18 19
2019-12-22 20 21 22 23
```

```python
df.iloc[2,2] = 1111
print(df)
----------------------
A B C D
2019-12-17 0 1 2 3
2019-12-18 4 5 6 7
2019-12-19 8 9 1111 11
2019-12-20 12 13 14 15
2019-12-21 16 17 18 19
2019-12-22 20 21 22 23
```

```python
df.loc['2019-12-17','B'] = 222
df
----------------------
A    B    C    D
2019-12-17    0    222    2    3
2019-12-18    4    5    6    7
2019-12-19    8    9    1111    11
2019-12-20    12    13    14    15
2019-12-21    16    17    18    19
2019-12-22    20    21    22    23
```

```python
df.A[df.A>4] = 0
df
---------------

A    B    C    D
2019-12-17    0    222    2    3
2019-12-18    4    5    6    7
2019-12-19    0    9    1111    11
2019-12-20    0    13    14    15
2019-12-21    0    17    18    19
2019-12-22    0    21    22    23
```

```python
df['E'] = pd.Series([1,2,3,4,5,6],index=pd.date_range('20191217',periods=6))
df
---------------------

A    B    C    D    E
2019-12-17    0    0    2    3    1
2019-12-18    4    0    6    7    2
2019-12-19    0    0    1111    11    3
2019-12-20    0    0    14    15    4
2019-12-21    0    0    18    19    5
2019-12-22    0    0    22    23    6
```

```python
df.iloc[0,1] = np.nan
df.iloc[1,2] = np.nan
df
---------------
A    B    C    D E
2019-12-17    0    NaN    2.0    3    1
2019-12-18    4    0.0    NaN    7    2
2019-12-19    0    0.0    1111.0    11    3
2019-12-20    0    0.0    14.0    15    4
2019-12-21    0    0.0    18.0    19    5
2019-12-22    0    0.0    22.0    23    6
```

```python
df.dropna(axis=0,how='any') # how=['any','all'] 
------------------
A    B    C    D E
2019-12-19    0    0.0    1111.0    11    3
2019-12-20    0    0.0    14.0    15    4
2019-12-21    0    0.0    18.0    19    5
2019-12-22    0    0.0    22.0    23    6
```

```python
df.iloc[1,1] = np.nan
df
-----------------

A    B    C    D E
2019-12-17    0    NaN    2.0    3    1
2019-12-18    4    NaN    NaN    7    2
2019-12-19    0    0.0    1111.0    11    3
2019-12-20    0    0.0    14.0    15    4
2019-12-21    0    0.0    18.0    19    5
2019-12-22    0    0.0    22.0    23    6
```

```python
print(df.fillna(value=12))
------------------
A B C D E
2019-12-17 0 12.0 2.0 3 1
2019-12-18 4 12.0 12.0 7 2
2019-12-19 0 0.0 1111.0 11 3
2019-12-20 0 0.0 14.0 15 4
2019-12-21 0 0.0 18.0 19 5
2019-12-22 0 0.0 22.0 23 6
```

```python
print(df.isnull())
---------------------
A B C D E
2019-12-17 False True False False False
2019-12-18 False True True False False
2019-12-19 False False False False False
2019-12-20 False False False False False
2019-12-21 False False False False False
2019-12-22 False False False False False
```

```python
df1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'])
df2 = pd.DataFrame(np.ones((3,4))*1,columns=['a','b','c','d'])
df3 = pd.DataFrame(np.ones((3,4))*2,columns=['a','b','c','d'])
print(df1)
print(df2)
print(df3)
-----------------------
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
a b c d
0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
a b c d
0 2.0 2.0 2.0 2.0
1 2.0 2.0 2.0 2.0
2 2.0 2.0 2.0 2.0
```

```python
res = pd.concat([df1,df2,df3],ignore_index=True)
res
--------------------
a    b    c    d
0    0.0    0.0    0.0    0.0
1    0.0    0.0    0.0    0.0
2    0.0    0.0    0.0    0.0
3    1.0    1.0    1.0    1.0
4    1.0    1.0    1.0    1.0
5    1.0    1.0    1.0    1.0
6    2.0    2.0    2.0    2.0
7    2.0    2.0    2.0    2.0
8    2.0    2.0    2.0    2.0
```

```python
df4 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'])
df5 = pd.DataFrame(np.ones((3,4))*1,columns=['b','c','d','e'])
print(df4)
print(df5)
-----------------
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
b c d e
0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
```

```python
res = pd.concat([df4,df5],sort=True)
res
---------------------

a    b    c    d    e
0    0.0    0.0    0.0    0.0    NaN
1    0.0    0.0    0.0    0.0    NaN
2    0.0    0.0    0.0    0.0    NaN
0    NaN    1.0    1.0    1.0    1.0
1    NaN    1.0    1.0    1.0    1.0
2    NaN    1.0    1.0    1.0    1.0
```

```python
res = pd.concat([df4,df5],axis=1)
res
----------------
a    b    c    d    b    c    d    e
0    0.0    0.0    0.0    0.0    1.0    1.0    1.0    1.0
1    0.0    0.0    0.0    0.0    1.0    1.0    1.0    1.0
2    0.0    0.0    0.0    0.0    1.0    1.0    1.0    1.0
```

```python
df8 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'])
s1 = pd.Series([1,2,3,4],index=['a','b','c','d'])
res = df8.append(s1,ignore_index=True)
res
---------------
```

```python
a    b    c    d
0    0.0    0.0    0.0    0.0
1    0.0    0.0    0.0    0.0
2    0.0    0.0    0.0    0.0
3    1.0    2.0    3.0    4.0
```

 

你可能感兴趣的:(pandas基础操作)