- 错误代码0x1 c 语言,Windows程序(API)错误处理机制和错误代码
花城旧梦
错误代码0x1c语言
一、WindowsAPI错误机制当我们在自己的代码里调用Windows系统的API函数,系统执行API内部代码,当API内部代码出现错误,会将预先定义好的错误代码写到调用这个API的线程局部存储区域(这个区域是每个线程独有的其他线程无法更改。它存储着一些线程独有的东西),然后API返回,返回值告诉我们该API执行失败了。如果我们的代码加了检测,发现了API失败,这时我们调用GetLastError
- 单目测距(yolo-目标检测+标定+深度学习目标检测_测距)
计算机C9硕士_算法工程师
YOLO目标检测深度学习
YOLOv5模型介绍YOLOv5是目前最先进的目标检测算法之一,在多个数据集上取得了优秀的表现。相较于YOLOv4,YOLOv5采用了更深的Backbone网络和更高的分辨率输入图像,以提高检测精度和速度。单目测距实现方法在目标检测的基础上,我们可以通过计算物体在图像中的像素大小来估计其距离。具体方法是,首先确定某个物体的实际尺寸,然后根据该物体在图像中的像素大小计算其距离。这个方法可以应用于各种
- (转)UEFI概述
gjq_1988
其他uefi
EFI可扩展固件接口(英文名ExtensibleFirmwareInterface或EFI)是由英特尔,一个主导个人电脑技术研发的公司推出的一种在未来的类PC的电脑系统中替代BIOS的升级方案。BIOS技术的兴起源于IBMPC/AT机器的流行以及第一台由康柏公司研制生产的“克隆”PC。在PC启动的过程中,BIOS担负着初始化硬件,检测硬件功能,以及引导操作系统的责任,在早期,BIOS还提供一套运行
- 第三章:实时流数据处理与分析
深度学习客
大数据技术进阶linqc#数据分析
目录3.1流处理框架深入解析与实战Flink与KafkaStreams的性能对比:事件驱动架构的代码实现1.ApacheFlink:流处理的“性能怪兽”2.KafkaStreams:轻量级、低延迟的流式处理框架实时异常检测与报警系统:结合FlinkCEP(ComplexEventProcessing)进行实现3.2低延迟流处理优化数据流式计算中的状态管理与容错机制:FlinkCheckpointi
- 【智能算法】哈里斯鹰算法(HHO)原理及实现
小O的算法实验室
智能算法算法智能算法
目录1.背景2.算法原理2.1算法思想2.2算法过程3.代码实现4.参考文献1.背景2019年,Heidari等人受到哈里斯鹰捕食行为启发,提出了哈里斯鹰算法(HarrisHawkOptimization,HHO)。2.算法原理2.1算法思想根据哈里斯鹰特性,HHO分为探索-过渡-开发三个阶段。2.2算法过程探索:哈里斯鹰以其强大的视力追踪和检测猎物,但有时猎物不易察觉。它们会在沙漠地区等待、观察
- Solon Cloud Gateway 开发:熟悉 ExContext 及相关接口
组合缺一
SolonJavaFrameworkgatewaysolonjava后端
分布式网关的主要工作是路由及数据交换,在定义时,会经常用到:接口说明RouteFilterFactory路由过滤器工厂RoutePredicateFactory路由检测器工厂CloudGatewayFilter分布式网关过滤器ExFilter交换过滤器ExPredicate交换检测器ExContext交换上下文ExFilter应用场景CloudGatewayFilterextendsExFilte
- 如何修改被添加到git中的文件,但是又不想将修改提交?
场景例如多人工程中,.vscode/settings.json被管理者提交到了git中,但是我本地又有自己想修改的配置,如果直接修改git就会检测到,然后不小心就commit了。解决方案使用gitupdate-index--assume-unchanged命令来忽略本地对.vscode/settings.json的修改:gitupdate-index--assume-unchanged.vscod
- Python实现图像(边缘)锐化:梯度锐化、Roberts 算子、Laplace算子、Sobel算子的详细方法
闲人编程
pythonpython计算机视觉人工智能SobelLaplaceRoberts锐化
目录Python实现图像(边缘)锐化:梯度锐化、Roberts算子、Laplace算子、Sobel算子的详细方法引言一、图像锐化的基本原理1.1什么是图像锐化?1.2边缘检测的基本概念二、常用的图像锐化算法2.1梯度锐化2.1.1实现步骤2.2Roberts算子2.2.1实现步骤2.3Laplace算子2.3.1实现步骤2.4Sobel算子2.4.1实现步骤三、Python实现图像锐化3.1导入必
- [VC] 检测AVX系列指令集的支持级别(AVX、AVX2、F16C、FMA、FMA4、XOP)
zyl910
#All-所有SIMDc汇编functionreferenceapplicationnull
从2011年的SandyBridge微架构处理器开始,现在支持AVX系列指令集的处理器越来越多了。本文探讨如何用VC编写检测AVX系列指令集的程序,并利用了先前的CPUIDFIELD方案。一、AVX系列指令集简介SSE5指令:SSE5是一个纸面上的指令集,并没有最终实现,AMD在2007年8月公布SSE5指令集规范,在2009年5月AMD推出了XOP,FMA4以及CVT16来取代SSE5指令。AV
- 【TC3xx芯片】AUTOSAR架构下内部看门狗复位检测
汽车电子嵌入式
AUTOSAR精进之路AUTOSARWatchDog功能安全SMUTC3xx架构
目录前言正文1.背景知识1-内部看门狗2.背景知识2-SMU问题:我们在SMU中断处理程序或者NMItraphandler中怎么确定时WatchDog上报的alarm了?3.背景知识3-CSA问题1:什么是CSA?问题2:怎么知道一块CSA保存的UpperCotext还是LowerContext?问题3:CPU如果管理所有的CSA内容?问题4:CSA中的什么信息和看门狗复位最为相关?问题5:看门狗
- 【计算机视觉】图像滤波
油泼辣子多加
计算机视觉计算机视觉人工智能python神经网络
1.图像滤波定义图像滤波是一种非常重要的图像处理技术,图像平滑、边缘检测、边缘增强、去除噪声都属于图像滤波,图像滤波是一种基于邻域的算法。通过图像滤波,可以实现图像平滑、边缘检测;图像平滑也叫图像模糊,用以去除图像中的噪声、伪影等,它是图像处理和计算机视觉的常见步骤。函数模糊类型特点使用场景cv.blur均值模糊简单快速,所有像素权重相等基础平滑和降噪cv.GaussianBlur高斯模糊中心权重
- Linux网络编程——TCP多客户端连接服务器
「已注销」
linuxc语言tcpip
1、Select函数原型#includeintselect(intnfds,fd_set*readfds,fd_set*writefds,fd_set*exceptfds,structtimeval*timeout);函数参数:intnfds:监听的文件描述符中最大文件描述符加1,告诉内核需要检测文件描述符的个数;readfds:监听有读数据到达文件描述符集合,传入传出参数;writefds:监听
- 【微服务与分布式实践】探索 Eureka
Forest 森林
微服务与分布式实践eureka
服务注册中心心跳检测机制:剔除失效服务自我保护机制统计心跳失败的比例在15分钟之内是否低于85%,如果出现低于的情况,EurekaServer会将当前的实例注册信息保护起来,让这些实例不会过期。当节点在短时间内丢失过多的心跳时,那么这个节点就会进入自我保护模式,以防止因网络问题导致的服务注册失败高可用:注册中心集群模式、互相注册、服务同步AP(保证可用性,放弃数据一致性)服务注册服务心跳续约、定期
- AI智能制造软件有什么用处
雪叶雨林
行业资讯AI人工智能制造
随着信息技术与制造业的深度融合,人工智能(AI)逐渐成为提升制造效率和灵活性的重要工具。AI智能制造软件通过集成数据分析、机器学习和自动化流程,为企业提供了优化生产、降低成本和提高质量的新途径。生产过程优化实时监控与反馈AI智能制造软件能够实时收集生产线上的各类数据,如温度、压力、速度等参数,并通过机器学习算法进行分析处理。一旦检测到异常情况,系统会立即发出警报并提供改进建议,帮助企业快速响应问题
- 分布式光纤应变监测是一种高精度、分布式的监测技术
无锡布里渊
分布式分布式光纤测温温度监测火灾预警厘米级线型感温火灾监测分布式光纤应变
一、土木工程领域桥梁结构健康监测主跨应变监测:在大跨度桥梁的主跨部分,如悬索桥的主缆、斜拉桥的斜拉索和主梁,分布式光纤应变传感器可以沿着这些关键结构部件进行铺设。通过实时监测应变情况,能够精确捕捉到车辆荷载、风荷载、温度变化等因素引起的结构变形。例如,在强风天气下,桥梁主梁会产生较大的横向和竖向位移,光纤应变传感器可以及时检测到这种变化,评估桥梁结构的安全性。桥墩和基础应变监测:桥墩是支撑桥梁上部
- SalFAU-Net:显著性目标检测的显著性融合注意U-Net
明初啥都能学会
目标检测人工智能计算机视觉
SalFAU-Net:显著性目标检测的显著性融合注意U-Net摘要IntroductionRelatedWorksSalFAU-Net:SaliencyFusionAttentionU-NetforSalientObjectDetection摘要显著目标检测(SOD)在计算机视觉中仍然是一个重要的任务,其应用范围从图像分割到自动驾驶。基于全卷积网络(FCN)的方法在过去几十年里在视觉显著性检测方面
- 人脸识别的经典深度学习方法
明初啥都能学会
深度学习人工智能
人脸识别的经典深度学习方法引言1.卷积神经网络(CNN)1.1LeNet1.2AlexNet1.3VGGNet1.4ResNet2.人脸检测2.1Viola-Jones算法2.2基于深度学习的人脸检测3.人脸特征提取3.1主成分分析(PCA)3.2人脸对齐3.2.1基于特征点的对齐3.2.2基于深度学习的对齐4.人脸识别模型4.1传统机器学习方法4.2基于深度学习的方法5.公式解读5.1卷积运算5
- 【微服务与分布式实践】探索 Dubbo
Forest 森林
微服务与分布式实践dubbo
核心组件服务注册与发现原理服务提供者启动时,会将其服务信息(如服务名、版本、所在节点的网络地址等)注册到注册中心。服务消费者则可以从注册中心发现可用的服务提供者列表,并与之通信。注册中心会存储服务的信息,并将这些信息广播给已经订阅了该服务的服务消费者。服务消费者会将获取到的服务提供者列表缓存到本地,以便后续直接访问。心跳检测机制:服务提供者会定期向注册中心发送心跳消息,注册中心根据这些心跳消息判断
- 基于深度学习的遥感目标检测系统:UI界面、R-CNN模型与数据集准备
2025年数学建模美赛
R-CNN检测系统人工智能深度学习r语言cnnpythonui目标检测
一、引言遥感图像中的目标检测在很多领域,如环境监测、土地利用、城市规划、农业资源监测等方面有着广泛应用。遥感图像具有高分辨率和丰富的空间信息,但同时也带来了目标检测中的许多挑战,特别是在目标尺度变化、遮挡和复杂背景的情况下。因此,采用深度学习技术,尤其是卷积神经网络(CNN)和区域卷积神经网络(R-CNN),在遥感图像目标检测中取得了显著的成果。本文将详细介绍基于深度学习的遥感目标检测系统,使用R
- 测试的基本原则
蚂蚁质量
软件测试功能测试
1.SDLC才是王道:软件开发生命周期(SDLC)对于软件开发而言,是如同基石般的关键流程,每一位开发人员都应该对其了如指掌。从最初的需求定义,到最终软件上线后的维护,SDLC的各个阶段环环相扣,共同构建起软件的完整生命周期。将测试理念融入到SDLC的每一个环节,就像是给建筑的每一层都做好了质量检测,是确保软件质量坚如磐石的重要举措。不同的组织由于自身的业务特点、技术水平和管理模式的差异,采用的S
- ultralytics 是什么?
博刻
AI学习笔记python
ultralytics是一个用于计算机视觉任务的Python库,专注于提供高效、易用的目标检测、实例分割和图像分类工具。它最著名的功能是实现YOLO(YouOnlyLookOnce)系列模型,特别是最新的YOLOv8。1.YOLO是什么?YOLO是一种流行的目标检测算法,以其速度快和精度高而闻名。YOLO的核心思想是将目标检测问题转化为一个回归问题,直接预测目标的边界框和类别。YOLOv8是YOL
- Shell练习(一)
Deutsch.
shellshLinux
使用Shell脚本,检测/tmp/size.log文件,若存在,则显示它的内容;若不存在,则创建文件将创建时间写入#vim1.shif[-e/tmp/size.log]thenecho"文件已存在,内容如下:"echo`cat/tmp/size.log`elseecho"文件不存在,已将当前时间写入文件"echo`date+"%F%T"`>/tmp/size.logfi效果验证使用Shell脚本,
- Silero VAD 开源项目教程
苏鹃咪Healthy
SileroVAD开源项目教程项目地址:https://gitcode.com/gh_mirrors/si/silero-vad项目介绍SileroVAD是一个预训练的企业级语音活动检测器(VoiceActivityDetector),由snakers4团队开发并开源在GitHub上。该项目支持多种语言和不同领域的音频,具有灵活的采样率(8000Hz和16000Hz),并且可以在PyTorch和O
- FSMN-VAD与Silero-VAD
Wasser.
python语音识别
引用说明:FSMN-VAD引用魔塔社区项目:https://modelscope.cn/models/iic/speech_fsmn_vad_zh-cn-16k-common-pytorch/summary感谢阿里大佬的开源与介绍。这篇文章主要介绍两种的ASR中的VAD开源模型,第一种就是FSMN-VAD,这个是达摩院语音团队提出的高效语音端点检测模型,用于检测输入音频中有效语音的起止时间点信息。
- C语言实现Berlekamp-Massey算法
belle-de-jour
密码分析算法c语言抽象代数密码学信息与通信线性代数
Berlekamp-Massey算法是一种广泛应用于纠错编码中的迭代算法,我们在许多纠错编码中都能看见它的用途。BM算法最初是为了解决线性递推序列的问题而提出的,后来被广泛应用于纠错编码中,特别是用于解码如RS码(Reed-Solomon码)和BCH码等循环纠错码。这些编码方案在数据传输和存储系统中扮演着重要角色,能够纠正多个错误并检测潜在的错误,从而确保数据的完整性和可靠性。BM算法基本原理BM
- WAF相关知识及安全狗的部署和绕过_安全狗waf拦截规则
2401_86951318
安全网络
2)工具检测二:安全狗使用指南(一)安全狗的下载(二)安全狗的安装(三)安全狗绕过一:WAF基础知识(一)WAF简介WAF即Web应用程序防火墙通过过滤和监视Web应用程序与Internet之间的HTTP通信来帮助保护Web应用程序,WebApplicationFirewall(WEB应用防护系统)。WAF与传统的Firewall(防火墙)不同,WAF针对的是应用层。WAF可以用来屏蔽常见的网站漏
- json格式的标记文件转yolo格式(txt)的标记文件
帅气的亮
jsonYOLOpython
背景我在使用anylabeling标记软件时发现导出的标记文件格式只能是json格式,而我yolov8训练模型的标记文件需要时txt格式的,所以我需要写一个转换脚本脚本1.脚本1这个脚本是针对于矩形框标记的转换,也就是目标检测importjsonimportosdefconvert_json_to_yolo(json_file_path,output_dir,class_mapping):"""将
- python windows 外部usb设备检测
myzzb
pythonwindows后端驱动开发交互
importwin32com#测试使用KINGSTON金士顿u盘list_name=["KINGSTON"]#windows外部设备检测defdetect():"""检测windows的外部设备通过全局变量把控,用的是匹配不是相等return获取到文件列表"""wmi=win32com.client.Dispatch("WbemScripting.SWbemLocator")service=wmi
- vue3底层原理和性能优化
Vue3在底层原理和性能优化方面做了许多改进,以下是一些主要的优化点和原理:虚拟DOM的改进静态树提升:Vue3能够检测到静态组件(即不依赖响应式数据的组件)并将其提升到渲染函数之外,从而减少不必要的重渲染。静态属性提升:对于静态属性,Vue3也会将其提升,避免每次渲染时重新创建这些属性。响应式系统的重构Proxy-based响应式:Vue3使用了ES6的Proxy对象来实现响应式系统,相比Vue
- Python中opencv的一些函数及应用
灵封~
pythonopencv开发语言
Sobel算子函数功能:Sobel算子用于计算图像的梯度(变化率),常用于边缘检测。它通过对图像应用一个基于一阶导数的滤波器来强调图像中的边缘部分,特别是水平和垂直方向上的边缘。通过计算图像的梯度,可以获得图像中亮度变化较大的地方,这些地方通常是物体的边界。Sobel算子有两个方向的变体:SobelX:计算水平方向的梯度。SobelY:计算垂直方向的梯度。Sobel算子函数:cv2.Sobel()
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D