- MNIST Examples for GGML - Fully connected network
Yongqiang Cheng
ggml-llama.cpp-whisper.cppGGMLMNISTExamplesFullyconnected
MNISTExamplesforGGML-Fullyconnectednetwork1.Build2.MNISTExamplesforGGML2.1.Obtainingthedata2.2.Fullyconnectednetwork2.2.1.TotrainafullyconnectedmodelinPyTorchandsaveitasaGGUFfile2.2.2.Toevaluatethemod
- MNIST Examples for GGML - Convolutional network
Yongqiang Cheng
ggml-llama.cpp-whisper.cppGGMLMNISTExamplesConvolutionalnetwork
MNISTExamplesforGGML-Convolutionalnetwork1.Build2.MNISTExamplesforGGML2.1.Obtainingthedata2.2.Convolutionalnetwork2.2.1.TotrainaconvolutionalnetworkusingTensorFlow2.2.2.ToevaluatethemodelontheCPUusing
- 【学习笔记】李宏毅2021春机器学习课程第2.3节:Adaptive Learning Rate
Harryline-lx
机器学习机器学习人工智能深度学习
文章目录Trainingstuck≠SmallGradientDifferentparametersneedsdifferentlearningrateRootmeansquareAdagradRMSPropAdamLearningRateSchedulingTrainingstuck≠SmallGradient首先要明确的一点是,目前当我们用gradientdescend来做optimizati
- Pix2PixHD代码小白解读(3)——Pix2PixHD_model.py
咖啡百怪
Pix2PixHD代码解读深度学习机器学习人工智能python
上两期:Pix2PixHD代码小白注释(1)——train.pyhttps://blog.csdn.net/qq_73991479/article/details/134757142?spm=1001.2014.3001.5501Pix2PixHD代码小白注释(2)——BaseModel.pyhttps://blog.csdn.net/qq_73991479/article/details/134
- 1.5 企业级AI大模型四阶技术全景解析:从Prompt到Pre-training的进化路径
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力人工智能promptchatgptlangchaingpt
企业级AI大模型四阶技术全景解析:从Prompt到Pre-training的进化路径一、技术演进金字塔:四阶技术如何构建AI新范式▲预训练│(万亿参数基建)├─大模型微调│(领域知识注入)├─AI智能体│(任务自动化)└─提示工程(零样本交互)1.1技术层级关系与适用场景技术阶段技术门槛算力需求企业应用成熟度典型工具链提示工程★☆☆☆☆CPU即可90%+企业已部署LangChain、AutoGPT
- X-R1 项目代码文件的详细剖析并精读rewards、grpo、x_grpo_trainer(src/x_r1)
仙人掌_lz
人工智能人工智能深度学习学习
这个项目名为[X-R1](https://github.com/dhcode-cpp/X-R1),是一个基于强化学习的训练框架,旨在构建一个易于使用、低成本的训练框架,以加速ScalingPost-Training的开发。以下是对该项目的详细解释:项目结构项目的主要目录结构如下:X-R1/├──.gitignore├──LICENSE├──Makefile├──README.md├──requir
- 【Getting Started】-时间复杂度-Time Complexity
zaiyang遇见
#Bronze(青铜组)信息学奥赛程序设计竞赛IOI时间复杂度USACO
文章目录时间复杂度计算-ComplexityCalculations常见的复杂度和限制-CommonComplexitiesandConstraints问题集-Quiz计算算法执行的操作次数。Measuringthenumberofoperationsanalgorithmperforms.在编程竞赛中,程序需要在限定时间内运行才能获得评分。例如,对于USACO,C++提交的时间限制是222秒,J
- Oracle数据库
岚苼
oracle数据库
文章目录1.表的创建(1)创建表的语法举例1:创建出版社表。举例2:创建图书表(2)使用DESCRIBE(describe)显示图书表的结构(3)通过子查询创建表举例(4)设置列的默认值DEFAULT(default)举例(5)删除已创建的表解析CASCADECONSTRAINTS(cascadeconstraints)2.表的操作(1)表的重命名RENAMETO(2)清空表TRUNCATE(tr
- 可可泛基因组-文献精读112
让学习成为一种生活方式
生物信息学泛基因组基因组泛基因组
GenomicstructuralvariantsconstrainandfacilitateadaptationinnaturalpopulationsofTheobromacacao,thechocolatetree基因组结构变异在可可树(Theobromacacao)自然种群中的适应性限制与促进作用意义基因组结构变异(SVs)是适应和物种形成的重要因素,但我们对其整体适应性后果的理解仍然有限
- 25、深度学习-自学之路-卷积神经网络基于MNIST数据集的程序展示
小宇爱
深度学习-自学之路深度学习cnn人工智能
importkeras#添加Keraskuimportsys,numpyasnpfromkeras.utilsimportnp_utilsimportosfromkeras.datasetsimportmnistprint("licheng:"+"20"+'\n')np.random.seed(1)(x_train,y_train),(x_test,y_test)=mnist.load_data(
- python票务系统_python基础学习:模拟火车订票系统
一愫
python票务系统
2020-12-20str1=["车次","出发站-到达站","出发时间","到达时间","历时"]train_numbers=["T40","T298","Z158"]train_place=["长春-北京","哈尔滨-北京","青岛-北京"]train_outTime=["00:12","00:06","12:48"]train_arriveTime=["12:20","10:50","21:
- GPT 系列模型发展史:从 GPT 到 ChatGPT 的演进与技术细节
Ash Butterfield
nlpgptchatgpt
从GPT到ChatGPT,OpenAI用短短几年时间,彻底改变了自然语言处理(NLP)的格局。让我们一起回顾这段激动人心的技术演进史!GPT(2018):划时代的起点:GPT(GenerativePre-trainedTransformer)首次将Transformer架构与无监督预训练结合,开启了大规模语言模型的新时代。核心突破:通过海量文本预训练+任务微调,GPT展示了强大的泛化能力。GPT-
- 【深度学习】常见模型-GPT(Generative Pre-trained Transformer,生成式预训练 Transformer)
IT古董
深度学习人工智能深度学习gpttransformer
GPT(GenerativePre-trainedTransformer)1️⃣什么是GPT?GPT(GenerativePre-trainedTransformer,生成式预训练Transformer)是由OpenAI开发的基于Transformer解码器(Decoder)的自回归(Autoregressive)语言模型。它能够通过大量无监督数据预训练,然后微调(Fine-tuning)以适应特
- DeepSeek-V2 论文解读:混合专家架构的新突破
进一步有进一步的欢喜
DeepSeek-V2大模型MoE混合专家架构
论文链接:DeepSeek-V2:AStrong,Economical,andEfficientMixture-of-ExpertsLanguageModel目录一、引言二、模型架构(一)多头部潜在注意力(MLA):重塑推理效率(二)DeepSeekMoE:经济高效的训练架构三、预训练(Pre-Training):夯实模型基础(一)实验设置(二)评估四、对齐(Alignment):优化模型表现(一
- 推荐项目:AWS Certified Machine Learning Specialty (MLS-C01) 课程
赵鹰伟Meadow
推荐项目:AWSCertifiedMachineLearningSpecialty(MLS-C01)课程AmazonSageMakerCourseInthisAWSMachineLearningSpecialtyCourse,Youwillgainfirst-handexperienceonhowtotrain,optimize,deploy,andintegrateMLinAWScloud.Le
- 用Llama Factory单机多卡微调Qwen2.5时报torch.OutOfMemoryError: CUDA out of memory的解决办法
蛐蛐蛐
大模型科研工具Python技巧llama人工智能大模型
接着上一篇博客:在Ubuntu上用LlamaFactory命令行微调Qwen2.5的简单过程_llamafactory微调qwen2.5-CSDN博客如果需要微调比较大的模型,例如Qwen2.5-32B,那么在两个3090上可能不够用,这里我用A6000×4的服务器。但如果仿照上篇博客,直接运行:llamafactory-clitrainexamples/train_qlora/qwen_lora
- 【目标检测】YOLO格式数据集txt标注转换为COCO格式JSON
ericdiii
目标检测目标检测YOLOjson
YOLO格式数据集:images|--train|--test|--vallabels|--train|--test|--val代码:importosimportjsonfromPILimportImage#设置数据集路径dataset_path="path/to/your/dataset"images_path=os.path.join(dataset_path,"images")labels_
- mnist数据集下载及使用
小句
pytorch机器学习
#mnist数据集在百度云盘里#链接:https://pan.baidu.com/s/1ca2rL2-0_JLtnH1YQ3otvA#提取码:uq3d#pytorch自带数据集的使用importtorchvisionfromtorchvision.datasetsimportMNISTmnist=MNIST(root="./data",train=True,download=False)print
- CentOS虚机在线扩容系统盘数据盘
robin5911
编程开发openstack操作系统centoslinux运维
最近在制作Openstack下的镜像,用户需要CentOS6以及CentOS7的虚机镜像,遇到了些关于系统盘以及数据盘在线扩容的问题,故此整理一下。传统我们想对磁盘在线热扩容,必然会想到LVM逻辑卷。如果没有LVM逻辑卷的情况下,则可以考虑使用growpart命令。#yum-yinstallcloud-utils-growpart在内核3.6.0以上,是可以实现系统盘在线扩容的,如果低版本内核则需
- 【Python】科研代码学习:十七 模型参数合并,safetensors / bin
溢流眼泪
【科研代码】python学习开发语言
【Python】科研代码学习:十七模型参数合并,safetensors/bin前言解决代码知识点:safetensors和bin的区别?知识点:save_pretrained还会新增的文件知识点:在保存模型参数时,大小发生了成倍的变化前言众所周知,LLM的模型参数一般保存在.safetensors或者.bin结尾的大文件但是通过一个RLHF的一个训练后,使用了FSDP分布式训练器所以把文件参数保存
- 常见目录和文件
被放养的研究生
计算机视觉计算机视觉python
常见目录data——存放数据集models——存放模型utils——通常会包含一些用于数据预处理的函数,这些函数的目的是将原始数据转换为适合神经网络输入的格式。激活函数、损失函数常见文件detec.py——传入参数,调用modelstrain.py——传入参数,调用models,学习率test.py——复现最佳结果main.py——定义一些参数。比如模型参数,epoch,patchsize,数据集
- 2024广东省职业技能大赛云计算——容器云平台(K8S集群)搭建
kuuuugua
广东省职业技能大赛云计算云计算容器k8skubernetesistiodocker
容器云平台搭建前言容器镜像使用的是斗学培训平台提供的镜像包,这东西网上都没有,一堆人要,我是靠自己想的方法获取到了,也不敢给。你们可以通过在这个网站申请环境进行操作https://ncc.douxuedu.com/虚拟机使用的是自行创建的CentOS7,如果你不会,那虚拟机创建的流程可以参考我这篇文章:职业技能大赛云计算赛项实战——OpenStack搭建-CSDN博客CentOS7系统选择2009
- 2024广东省职业技能大赛云计算——Redis主从架构
kuuuugua
广东省职业技能大赛云计算云计算redis架构
Redis主从架构前言Redis是一个开源的内存数据结构存储系统,一般用于作为数据库、缓存和消息代理使用,而主从架构是许多分布式系统中常见的设计模式,用来提高系统的性能、可靠性和扩展性。虚拟机使用的是自行创建的CentOS7,如果你不会,那虚拟机创建的流程可以参考我这篇文章:职业技能大赛云计算赛项实战——OpenStack搭建-CSDN博客使用镜像为CentOS-7-x86_64-DVD-2009
- 预训练语言模型:从BERT到GPT,NLP的新纪元
Evaporator Core
自然语言处理人工智能Python开发经验自然语言处理语言模型bert
自然语言处理(NLP)在过去几年中经历了翻天覆地的变化,而这一变化的催化剂无疑是预训练语言模型(Pre-trainedLanguageModels,PLMs)的崛起。从BERT到GPT,这些模型不仅在学术研究中取得了突破性进展,也在工业界得到了广泛应用。本文将深入探讨预训练语言模型的原理、发展历程以及如何在实际项目中应用这些强大的工具。1.预训练语言模型的背景在深度学习时代之前,NLP任务主要依赖
- 【深度学习实战:kaggle自然场景的图像分类-----使用keras框架实现vgg16的迁移学习】
机器学习司猫白
深度学习分类keras
Hello大家好,今天和大家分享一个kaggle自然场景的图像分类的竞赛,使用的keras框架实现vgg16的迁移学习完成自然场景分类,对数据集感兴趣的同学可以在上方下载数据集。项目简介本次数据集来自kaggle,该数据集包括自然场景的图像。模型应该预测每个图像的正确标签。您的目标是实现分类问题的高精度。数据集train.csv-训练集test.csv-测试集SceneImages-图像文件夹训练
- 使用U-Net处理Postdam数据集进行语义分割任务 如何从准备数据到训练和评估一个基于U-Net的模型。训练使用遥感影像分析研究语义分割数据集
计算机C9硕士_算法工程师
语义分割unet
使用U-Net处理Postdam数据集进行语义分割任务如何从准备数据到训练和评估一个基于U-Net的模型。训练使用遥感影像分析研究数据集文章目录1.安装依赖2.数据准备创建自定义的数据加载器3.模型定义4.训练模型5.可视化预测结果Postdam数据集遥感影像-语义分割数据集:Postdam数据集像素大小512*512训练图片为.tif标签图片为.tif数据集(train3678张val920张)
- GridBagConstraints参数详解
GridBagConstraints解析与应用GridBagConstraints是JavaSwing中与GridBagLayout布局管理器配合使用的一个关键类,它负责确定组件在网格中的位置、大小、对齐方式以及拉伸行为。正确理解和使用GridBagConstraints可以帮助开发者精确控制GUI组件的布局。主要参数及其解释在使用GridBagConstraints时,有多个参数可以影响组件的布
- OpenStack-Train版-Allinone自动化部署脚本
编程就是如此
OpenStackopenstack自动化运维
一、环境准备操作系统:CentOS7或以上版本建议配置:CPU:8核或以上内存:16GB或以上磁盘:500GB或以上网络配置:确保虚拟机已配置静态IP地址确保虚拟机可以正常访问外部网络二、自动化部署脚本#!/bin/bash#设置主机名hostnamectlset-hostnameopenstack.alione.localecho"Hostnamesettoopenstack.alione.lo
- 创建一个基于YOLOv8+PyQt界面的驾驶员疲劳驾驶检测系统 实现对驾驶员疲劳状态的打哈欠检测,头部下垂 疲劳眼睛检测识别
QQ_767172261
行为类别睡觉姿态课堂等YOLOpyqt
如何使用Yolov8创建一个基于YOLOv8的驾驶员疲劳驾驶检测系统文章目录1.数据集准备2.安装依赖3.创建PyQt界面4.模型训练1.数据集准备2.模型训练数据集配置文件(`data.yaml`)训练脚本(`train.py`)3.PyQt界面开发主程序(`MainProgram.py`)4.运行项目5.关键代码解释数据集配置文件(`data.yaml`)训练脚本(`train.py`)主程序
- YOLOv11-ultralytics-8.3.67部分代码阅读笔记-dist.py
红色的山茶花
YOLO笔记深度学习
dist.pyultralytics\utils\dist.py目录dist.py1.所需的库和模块2.deffind_free_network_port()->int:3.defgenerate_ddp_file(trainer):4.defgenerate_ddp_command(world_size,trainer):5.defddp_cleanup(trainer,file):1.所需的库
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi