- OpenStack 云平台的深度定制与性能优化
算法探索者
openstack
引言OpenStack作为一款领先的开源云平台,以其高度的灵活性和可扩展性,为企业构建云计算基础设施提供了强大的支持。然而,不同企业的业务场景和技术需求千差万别,原生的OpenStack部署往往无法完全满足企业特定的要求。因此,对OpenStack云平台进行深度定制,并在此基础上进行性能优化,成为了企业充分发挥OpenStack优势、提升云服务质量的关键。本文将深入探讨如何针对企业特定需求对Ope
- MotionLayout(二):MotionLayout是什么?MotionLayout调试技巧、KeyFrame关键帧等等
前期后期
androidkotlin学习
一、MotionLayout是什么?●定位:AndroidJetpack中的高级布局容器,继承自ConstraintLayout。●核心功能:通过状态(State)和过渡(Transition)定义复杂的界面动画,支持手势交互、路径动画等。●优势:简化动画开发流程,替代传统Animator或TransitionManager,适合处理多视图联动、复杂转场效果。1.1应用场景使用MotionLayo
- OpenStack阶梯计价实战:Hashmap模块从入门到精准计费
冯·诺依曼的
openstack云计算linux
目录Hashmap模块概述核心概念解析配置步骤详解应用场景分析注意事项与扩展1.Hashmap模块概述OpenStack的Rating模块负责资源使用量的计费统计,而Hashmap是其核心组件,用于定义灵活的计价规则。通过Hashmap,管理员可以:根据资源类型(如CPU、存储、网络)设置差异化单价实现阶梯计价(如使用量超过阈值后单价打折)将资源与服务、服务组绑定,支持复杂计费策略2.核心概念解析
- 青少年编程与数学 02-011 MySQL数据库应用 09课题、规则、约束和默认值
明月看潮生
编程与数学第02阶段数据库青少年编程mysql编程与数学
青少年编程与数学02-011MySQL数据库应用09课题、规则、约束和默认值一、规则1.规则的概念2.规则的类型3.规则的定义和应用3.1创建表3.2定义规则3.3应用规则4.规则的管理和维护5.规则的性能影响6.其他相关概念二、规则应用示例(一)、检查约束(CHECKConstraints)示例1.限制年龄范围2.限制性别取值(二)、触发器(Triggers)示例1.自动记录日志2.防止非法删除
- 程序员学商务英语之Don‘t jinx it、l have a half mind to do sth、Don‘t change the subject、Quality over quantity..
李匠2024
英文
1463-Don'tjinxit.-别鸟鸦嘴A:Whatifitrainstheweekend?Youknow,theweather'sbeenchangeablethesedays!如果这个周末下雨怎么办?你知道,这些天的天气变化无常!B:Don'tiinxit.i'vespentalotoftimepreparingforthiscamping.lhopeitstaysfineforthewe
- 一文说清楚什么是预训练(Pre-Training)、微调(Fine-Tuning),零基础小白建议收藏!!
小城哇哇
人工智能语言模型AI大模型大模型微调预训练agiLLM
前言预训练和微调是现代AI模型的核心技术,通过两者的结合,机器能够在处理复杂任务时表现得更为高效和精准。预训练为模型提供了广泛的语言能力,而微调则确保了模型能够根据特定任务进行细化和优化。近年来,人工智能(AI)在各个领域的突破性进展,尤其是在自然语言处理(NLP)方面,引起了广泛关注。两项重要的技术方法——预训练和微调,成为了AI模型发展的基石。预训练通常是指在大规模数据集上进行模型训练,以帮助
- Mysql 报错: (1364, “Field ‘id‘ doesn‘t have a default value“)
Lonelypatients°
MySQLmysql
主要原因:在于主键表Id没有设置自增而报错,解决办法:设置主键自增会诱发另一个错误:Cannotchangecolumn'id':usedinaforeignkeyconstraint在于主键id已存在外键关系,不允许随意修改主键的属性值,所以我们须得先把外键关联删除之后,在更改主键,主键更改完毕后,加入外键,就好了
- MiniMind:完全从 0 训练自己的大模型
三花AI
三花AI人工智能LLM大模型
是B站UP主近在远方的远开源的一个微型语言模型,改进自DeepSeek-V2、Llama3结构,项目包含整个数据处理、pretrain、sft、dpo的全部阶段,包含混合专家(MoE)模型。其目标是把上手LLM的门槛无限降低,直接从0开始训练一个极其轻量的语言模型,最低仅需2G显卡即可推理训练!
- minimind2学习:(1)训练
溯源006
minimind学习学习深度学习生成模型
1、数据下载参考:https://github.com/jingyaogong/minimind/tree/master2、预训练训练6个epochspythontrain_pretrain.py--epochs6训练过程:LLM总参数量:25.830百万Epoch:[1/6](0/11040)loss:8.940lr:0.000550000000epoch_Time:106.0min:Epoch
- MiniMind
亚伯拉罕·黄肯
大模型人工智能
数据集分类:tokenizer训练集:这个数据集用于训练分词器(tokenizer),是文本处理中的一个重要步骤。它可以帮助模型更好地理解文本数据的结构。Pretrain数据:这是用于预训练模型的数据集,它可以帮助模型学习语言的基本结构和特征。SFT数据:SFT(SupervisedFine-Tuning)数据集,用于监督式微调,可以提高模型在特定任务上的性能。DPO数据1和DPO数据2:这两个数
- LLMs之minimind:minimind源码解读(pretrain.py)——实现基于Transformer架构的大规模语言模型预训练及wandb监控—支持余弦退火学习率调度/分布式预训练/自动混
一个处女座的程序猿
NLP/LLMsCaseCodetransformerminimind预训练
LLMs之minimind:minimind源码解读(pretrain.py)——实现基于Transformer架构的大规模语言模型预训练及wandb监控—支持余弦退火学习率调度/分布式预训练/自动混合精度优化/梯度累积/梯度裁剪/定期保存模型目录minimind源码解读(pretrain.py)——实现基于Transformer架构的大规模语言模型预训练及wandb监控—支持余弦退火学习率调度/
- 【机会约束、鲁棒优化】机会约束和鲁棒优化研究优化【ccDCOPF】研究(Matlab代码实现)
科研_G.E.M.
matlab概率论开发语言
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述机会约束、鲁棒优化与ccDCOPF研究综述1.机会约束规划(ChanceConstrainedProgramming,CCP)在电力系统中的应用2.鲁棒优化(RobustOptimization,RO)在电力系统中的应用3.机会约束与鲁棒优化的协同方法
- 2020年全国职业院校技能大赛改革试点赛高职组“云计算”竞赛赛卷
春生黎至1005
云计算全国职业技能竞赛样题云计算
2020年全国职业院校技能大赛改革试点赛高职组“云计算”竞赛赛卷第一场次题目:OpenStack平台部署与运维某企业拟使用OpenStack搭建一个企业云平台,以实现资源池化弹性管理、企业应用集中管理、统一安全认证和授权等管理。系统架构如图1所示,IP地址规划如表1所示。图1系统架构图表1IP地址规划设备名称主机名接口IP地址说明云服务器1Controllereth0192.168.x.10/24
- 云计算赛题私有云服务搭建题目
春生黎至1005
云计算全国职业技能竞赛样题云计算私有云
【任务1】私有云服务搭建[5分]【题目1】1.1.1基础环境配置[0.2分]1.控制节点主机名为controller,设置计算节点主机名为compute;2.hosts文件将IP地址映射为主机名。使用提供的用户名密码,登录提供的OpenStack私有云平台,在当前租户下,使用CentOS7.9镜像,创建两台云主机,云主机类型使用4vCPU/12G/100G_50G类型。当前租户下默认存在一张网卡,
- 深度学习与目标检测系列(三) 本文约(4万字) | 全面解读复现AlexNet | Pytorch |
小酒馆燃着灯
深度学习目标检测pytorchAlexNet人工智能
文章目录解读Abstract-摘要翻译精读主要内容1.Introduction—前言翻译精读主要内容:本文主要贡献:2.TheDataset-数据集翻译精读主要内容:ImageNet简介:图像处理方法:3.TheArchitecture—网络结构3.1ReLUNonlinearity—非线性激活函数ReLU翻译精读传统方法及不足本文改进方法本文的改进结果3.2TrainingonMultipleG
- MySQL基本语句
冉冉柟
mysql数据库oracle
一、DDL(数据定义语言)DDL主要用于定义数据库、表、视图、索引等数据库对象的结构1.1创建数据库CREATEDATABASEdatabase_name;1.2删除数据库DROPDATABASEdatabase_name;1.3选择数据库USEdatabase_name;1.4创建表CREATETABLEtable_name( column1datatypeconstraint, column2
- 《深度剖析:BERT与GPT——自然语言处理架构的璀璨双星》
人工智能深度学习
在自然语言处理(NLP)的广袤星空中,BERT(BidirectionalEncoderRepresentationsfromTransformers)与GPT(GenerativePretrainedTransformer)系列模型宛如两颗最为耀眼的星辰,引领着NLP技术不断迈向新的高度。它们基于独特的架构设计,以强大的语言理解与生成能力,彻底革新了NLP的研究与应用范式,成为学界和业界竞相探索
- 机器学习课堂4线性回归模型+特征缩放
木尘152132
机器学习线性回归python
一、实验2-2,线性回归模型,计算模型在训练数据集和测试数据集上的均方根误差代码:#2-2线性回归模型importpandasaspdimportnumpyasnpimportmatplotlib.pyplotasplt#参数设置iterations=3000#迭代次数learning_rate=0.0001#学习率m_train=3000#训练样本的数量flag_plot_lines=False
- 数据分析_python进行数据筛选1_行筛选
Monkey*王
python数据分析pandas
以titanic的训练数据为例进行展示,为了简化取前十行为例首先导入模块,导入数据importpandasaspdimportnumpyasnpdf=pd.read_csv(r"C:\Users\admin\Desktop\train.csv")df=df.head(10)df.index=['a','b','c','d','e','f','g','h','i','g']筛选单行1.利用df[行索
- A SURVEY ON POST-TRAINING OF LARGE LANGUAGE MODELS——大型语言模型的训练后优化综述——第9部分——应用
王金-太想进步了
语言模型人工智能自然语言处理
应用尽管预训练为大型语言模型(LLMs)赋予了强大的基础能力,但在部署于专业领域时,LLMs仍经常遇到持续的限制,包括上下文长度受限、容易产生幻觉(hallucination)、推理能力欠佳和固有的偏见。在现实世界的应用中,这些不足显得尤为重要,因为在这些场景中,精确性、可靠性和伦理一致性是至关重要的。这些问题引发了一些根本性的探讨:(1)如何系统地提高LLM的表现以满足特定领域的需求?(2)在实
- MySQL数据库外键约束:打开与关闭的艺术
master_chenchengg
sql数据库数据库mysql
MySQL数据库外键约束:打开与关闭的艺术基本概念和作用说明示例一:开启外键约束示例二:关闭外键约束示例三:性能优化与外键约束示例四:外键约束与数据一致性示例五:排查外键约束引发的问题结论与讨论引发点在数据库的世界里,数据的完整性和一致性是至关重要的。其中,外键约束(ForeignKeyConstraints)扮演着重要的角色。但是,是否在任何情况下启用外键约束都是最佳选择呢?本文将深入探讨MyS
- yolo模型coco数据集详解
工头阿乐
深度学习YOLO
深度学习文章目录深度学习前言前言instances_train2017.json和instances_val2017.json文件均分为五大部分,这五部分对应的关键字分别为info、licenses、images、annotations、categories。{"info":info,"licenses":[license1,license2,license3,...],"images":[ima
- pytorch的使用:卷积神经网络模块
樱花的浪漫
pytorchcnnpytorch深度学习计算机视觉
1.读取数据分别构建训练集和测试集(验证集)DataLoader来迭代取数据使用transforms将数据转换为tensor格式#定义超参数input_size=28#图像的总尺寸28*28num_classes=10#标签的种类数num_epochs=3#训练的总循环周期batch_size=64#一个撮(批次)的大小,64张图片#训练集train_dataset=datasets.MNIST(
- 【人工智能】【Python】在Scikit-Learn中使用决策树算法(ID3和CART)
SmallBambooCode
机器学习人工智能python算法scikit-learn决策树机器学习ai
importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.datasetsimportload_irisfromsklearn.model_selectionimporttrain_test_splitfromsklearn.treeimportDecisionTreeClassifier,plot_tree#加载数据集iris=load_iri
- OpenStack Heat模板实战:快速创建用户、容器、网络与云主机类型
冯·诺依曼的
openstack网络ssh运维云计算
Heat是OpenStack中的编排服务,通过YAML模板自动化资源管理。本文通过4个实战案例,详解如何用Heat模板创建用户体系、Swift容器、网络资源及云主机类型。一、创建用户、Domain、租户及用户绑定目标:在chinaskillsDomain下创建beijing_group租户,并创建用户cloud。#user_create.ymlheat_template_version:2016-
- 【源码阅读】olmocr中的prompts
海绵波波107
#大模型pdf
目录一、PDF转换为训练数据二、使用微调模型三、比较差异总结一、PDF转换为训练数据让ChatGPT-4将文档(如PDF文件)转换为结构化的“银级”训练数据(silvertrainingdata)#Thisisthepromptweuseforgettingchatgpt4otoconvertdocumentsintooursilvertrainingdatadefbuild_openai_sil
- 训练数据重复采样,让正负样本比例1:1
kimi-222
机器学习人工智能深度学习
详细解释resample函数:resample函数来自sklearn.utils,用于从数据集中重新抽样。replace=True表示允许重复抽样,即同一个样本可以被多次选中。n_samples指定抽样的数量。确保训练集数量相同:通过resample函数,你可以确保正训练集和负训练集的数量相同,即使其中一个集的数量小于另一个集的数量。如果n_train_num小于max_train_num,res
- 数据读取错误:RuntimeError: The size of tensor a (3) must match the size of tensor b (4) at non-singleton
hitsz_syl
单例模式计算机视觉opencv
去除4通道图像:importcv2importosimportshutilfolder_path=R'F:\bounding_box_test\bounding_box_train'#更改为存储图片文件夹的路径image_files=os.listdir(folder_path)count=0forfile_nameinimage_files:iffile_name.endswith('.jpg'
- 95.HarmonyOS NEXT 图片约束处理教程:深入理解Constrain
harmonyos-next
温馨提示:本篇博客的详细代码已发布到git:https://gitcode.com/nutpi/HarmonyosNext可以下载运行哦!HarmonyOSNEXT图片约束处理教程:深入理解Constrain1.图片约束基础1.1核心概念概念说明应用场景图片适配类型定义图片如何适应容器图片展示方式偏移约束限制图片移动范围拖拽和缩放边界检测判断是否超出显示范围图片浏览1.2图片适配类型定义expor
- 关于stable diffusion的lora训练在linux远程工作站的部署
回天一梦
stablediffusionpython经验分享
在学校Arc中部署loratraining,一大问题就是依赖缺失和冲突。可以利用miniconda或者anaconda建立虚拟环境来解决。安装anaconda或者miniconda(官网上也有教程):wgethttps://repo.anaconda.com/archive/Anaconda3-5.3.0-Linux-x86_64.shchmod+xAnaconda3-5.3.0-Linux-x8
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi