kafka高性能架构之道

架构层面

利用partiton并行处理

kafka每个Topic都包含一个或多个Partition,不同Partition可位于不同节点。同时Partition在物理上对应一个本地文件夹,每个Partition包含一个或多个Segment,每个Segment包含一个数据文件和一个与之对应的索引文件。在逻辑上,可以把一个Partition当作一个非常长的数组,可通过这个“数组”的索引(offset)去访问其数据。

一方面,由于不同Partition可位于不同机器,因此可以充分利用集群优势,实现机器间的并行处理。另一方面,由于Partition在物理上对应一个文件夹,即使多个Partition位于同一个节点,也可通过配置让同一节点上的不同Partition置于不同的disk drive上,从而实现磁盘间的并行处理,充分发挥多磁盘的优势。

多Consumer消费同一个Topic时,同一条消息只会被同一Consumer Group内的一个Consumer所消费。而数据并非按消息为单位分配,而是以Partition为单位分配,也即同一个Partition的数据只会被一个Consumer所消费(在不考虑Rebalance的前提下)。

如果Consumer的个数多于Partition的个数,那么会有部分Consumer无法消费该Topic的任何数据,也即当Consumer个数超过Partition后,增加Consumer并不能增加并行度。

ISR-可用性和一致性的动态平衡

Kafka的数据复制是以Partition为单位的。而多个备份间的数据复制,通过Follower向Leader拉取数据完成。从一这点来讲,Kafka的数据复制方案接近于Master-Slave方案。不同的是,Kafka既不是完全的同步复制,也不是完全的异步复制,而是基于ISR的动态复制方案。

ISR,也即In-sync Replica。每个Partition的Leader都会维护这样一个列表,该列表中,包含了所有与之同步的Replica(包含Leader自己)。每次数据写入时,只有ISR中的所有Replica都复制完,Leader才会将其置为Commit,它才能被Consumer所消费。

这种方案,与同步复制非常接近。但不同的是,这个ISR是由Leader动态维护的。如果Follower不能紧“跟上”Leader,它将被Leader从ISR中移除,待它又重新“跟上”Leader后,会被Leader再次加加ISR中。每次改变ISR后,Leader都会将最新的ISR持久化到Zookeeper中。

使用ISR方案的原因

由于Leader可移除不能及时与之同步的Follower,故与同步复制相比可避免最慢的Follower拖慢整体速度,也即ISR提高了系统可用性。

ISR中的所有Follower都包含了所有Commit过的消息,而只有Commit过的消息才会被Consumer消费,故从Consumer的角度而言,ISR中的所有Replica都始终处于同步状态,从而与异步复制方案相比提高了数据一致性。

ISR可动态调整,极限情况下,可以只包含Leader,极大提高了可容忍的宕机的Follower的数量。与Majority Quorum方案相比,容忍相同个数的节点失败,所要求的总节点数少了近一半。

ISR相关配置说明

Broker的min.insync.replicas参数指定了Broker所要求的ISR最小长度,默认值为1。也即极限情况下ISR可以只包含Leader。但此时如果Leader宕机,则该Partition不可用,可用性得不到保证。

只有被ISR中所有Replica同步的消息才被Commit,但Producer发布数据时,Leader并不需要ISR中的所有Replica同步该数据才确认收到数据。Producer可以通过acks参数指定最少需要多少个Replica确认收到该消息才视为该消息发送成功。acks的默认值是1,即Leader收到该消息后立即告诉Producer收到该消息,此时如果在ISR中的消息复制完该消息前Leader宕机,那该条消息会丢失。而如果将该值设置为0,则Producer发送完数据后,立即认为该数据发送成功,不作任何等待,而实际上该数据可能发送失败,并且Producer的Retry机制将不生效。更推荐的做法是,将acks设置为all或者-1,此时只有ISR中的所有Replica都收到该数据(也即该消息被Commit),Leader才会告诉Producer该消息发送成功,从而保证不会有未知的数据丢失。

具体实现层面

高效实用磁盘

1顺序写磁盘

将写磁盘的过程变为顺序写,可极大提高对磁盘的利用率。

Kafka的整个设计中,Partition相当于一个非常长的数组,而Broker接收到的所有消息顺序写入这个大数组中。同时Consumer通过Offset顺序消费这些数据,并且不删除已经消费的数据,从而避免了随机写磁盘的过程。

由于磁盘有限,不可能保存所有数据,实际上作为消息系统Kafka也没必要保存所有数据,需要删除旧的数据。而这个删除过程,并非通过使用“读-写”模式去修改文件,而是将Partition分为多个Segment,每个Segment对应一个物理文件,通过删除整个文件的方式去删除Partition内的数据。这种方式清除旧数据的方式,也避免了对文件的随机写操作。


2.充分利用PageCache

使用Page Cache的好处如下:

1.I/O Scheduler会将连续的小块写组装成大块的物理写从而提高性能;

2.I/O Scheduler会尝试将一些写操作重新按顺序排好,从而减少磁盘头的移动时间;

3.充分利用所有空闲内存(非JVM内存)。如果使用应用层Cache(即JVM堆内存),会增加GC负担;

4.读操作可直接在Page Cache内进行。如果消费和生产速度相当,甚至不需要通过物理磁盘(直接通过Page Cache)交换数据;

5.如果进程重启,JVM内的Cache会失效,但Page Cache仍然可用。

Broker收到数据后,写磁盘时只是将数据写入Page Cache,并不保证数据一定完全写入磁盘。从这一点看,可能会造成机器宕机时,Page Cache内的数据未写入磁盘从而造成数据丢失。但是这种丢失只发生在机器断电等造成操作系统不工作的场景,而这种场景完全可以由Kafka层面的Replication机制去解决。如果为了保证这种情况下数据不丢失而强制将Page Cache中的数据Flush到磁盘,反而会降低性能。也正因如此,Kafka虽然提供了flush.messagesflush.ms两个参数将Page Cache中的数据强制Flush到磁盘,但是Kafka并不建议使用。

如果数据消费速度与生产速度相当,甚至不需要通过物理磁盘交换数据,而是直接通过Page Cache交换数据。同时,Follower从Leader Fetch数据时,也可通过Page Cache完成。

3.支持多Disk Drive

Broker的log.dirs配置项,允许配置多个文件夹。如果机器上有多个Disk Drive,可将不同的Disk挂载到不同的目录,然后将这些目录都配置到log.dirs里。Kafka会尽可能将不同的Partition分配到不同的目录,也即不同的Disk上,从而充分利用了多Disk的优势。

零拷贝

Kafka中存在大量的网络数据持久化到磁盘(Producer到Broker)和磁盘文件通过网络发送(Broker到Consumer)的过程。这一过程的性能直接影响Kafka的整体吞吐量。

传统模式下这一过程实际上发生了四次数据拷贝。首先通过系统调用将文件数据读入到内核态Buffer(DMA拷贝),然后应用程序将内存态Buffer数据读入到用户态Buffer(CPU拷贝),接着用户程序通过Socket发送数据时将用户态Buffer数据拷贝到内核态Buffer(CPU拷贝),最后通过DMA拷贝将数据拷贝到NIC Buffer。同时,还伴随着四次上下文切换。

Linux 2.4+内核通过sendfile系统调用,提供了零拷贝。数据通过DMA拷贝到内核态Buffer后,直接通过DMA拷贝到NIC Buffer,无需CPU拷贝。除了减少数据拷贝外,因为整个读文件-网络发送由一个sendfile调用完成,整个过程只有两次上下文切换,因此大大提高了性能。

注: transferTo和transferFrom并不保证一定能使用零拷贝。实际上是否能使用零拷贝与操作系统相关,如果操作系统提供sendfile这样的零拷贝系统调用,则这两个方法会通过这样的系统调用充分利用零拷贝的优势,否则并不能通过这两个方法本身实现零拷贝。

减少网络开销

1.批处理

批处理是一种常用的用于提高I/O性能的方式。对Kafka而言,批处理既减少了网络传输的Overhead,又提高了写磁盘的效率。

Kafka 0.8.2开始支持新的Producer API,将同步Producer和异步Producer结合,send方法并非立即将消息发送出去,而是通过batch.sizelinger.ms控制实际发送频率,从而实现批量发送。

由于每次网络传输,除了传输消息本身以外,还要传输非常多的网络协议本身的一些内容(称为Overhead),所以将多条消息合并到一起传输,可有效减少网络传输的Overhead,进而提高了传输效率。

虽然Broker持续从网络接收数据,但是写磁盘并非每秒都在发生,而是间隔一段时间写一次磁盘,并且每次写磁盘的数据量都非常大(最高达到718MB/S)。


2.数据压缩,降低网络负载

Kafka从0.7开始,即支持将数据压缩后再传输给Broker。除了可以将每条消息单独压缩然后传输外,Kafka还支持在批量发送时,将整个Batch的消息一起压缩后传输。数据压缩的一个基本原理是,重复数据越多压缩效果越好。因此将整个Batch的数据一起压缩能更大幅度减小数据量,从而更大程度提高网络传输效率。

Broker接收消息后,并不直接解压缩,而是直接将消息以压缩后的形式持久化到磁盘。Consumer Fetch到数据后再解压缩。因此Kafka的压缩不仅减少了Producer到Broker的网络传输负载,同时也降低了Broker磁盘操作的负载,也降低了Consumer与Broker间的网络传输量,从而极大得提高了传输效率,提高了吞吐量。

3.高效的序列化方式

Kafka消息的Key和Payload(或者说Value)的类型可自定义,只需同时提供相应的序列化器和反序列化器即可。因此用户可以通过使用快速且紧凑的序列化-反序列化方式(如Avro,Protocal Buffer)来减少实际网络传输和磁盘存储的数据规模,从而提高吞吐率。这里要注意,如果使用的序列化方法太慢,即使压缩比非常高,最终的效率也不一定高。

你可能感兴趣的:(kafka高性能架构之道)