- Flink项目基础配置指南
Edingbrugh.南空
flink大数据flink大数据
在大数据处理领域,ApacheFlink凭借强大的实时流处理和批处理能力,成为众多开发者的首选工具。在日常工作中,开发FlinkJar任务是常见需求,但每次都需重复配置日志、梳理pom依赖、设置打包插件等,流程繁琐且易出错。为提升开发效率,减少重复劳动,将这些基础配置进行整理归纳十分必要。本文将围绕Flink项目的本地日志配置、pom依赖及插件配置展开详细介绍,为开发者提供一套可直接复用的基础配置
- Apache SeaTunnel Flink引擎执行流程源码分析
Code Monkey’s Lab
源码分析Flinkflink大数据架构seatunnel
目录1.任务启动入口2.任务执行命令类:FlinkTaskExecuteCommand3.FlinkExecution的创建与初始化3.1核心组件初始化3.2关键对象说明4.任务执行:FlinkExecution.execute()5.Source处理流程5.1插件初始化5.2数据流生成6.Transform处理流程6.1插件初始化6.2转换执行7.Sink处理流程7.1插件初始化7.2数据输出执
- Beam2.61.0版本消费kafka重复问题排查
隔壁寝室老吴
kafkalinq分布式
1.问题出现过程在测试环境测试flink的job的任务消费kafka的情况,通过往job任务发送一条消息,然后flinkwebui上消费出现了两条。然后通过重启JobManager和TaskManager后,任务从checkpoint恢复后就会出现重复消费。当任务不从checkpoint恢复的时候,任务不会出现重复消费的情况。由此可见是beam从checkpoint恢复的时候出现了重复消费的问题。
- Flink CDC同步Oracle无主键表
Zzz...209
javaflinkoracle
FlinkCDC同步Oracle无主键表问题背景问题解决问题背景FlinkCDC是一种很强大且实用的实时数据同步工具,官网如下。链接:link但是在实际使用过程中还是会有些不足之处,比如说同步Oracle数据库中无主键以及唯一键的表时,关于目标端的幂等性时无法保证的。问题解决在Oracle数据库中,表中有一个伪列ROWID,而在CDC同步过来的数据中是不包含此列的。修改源码如下,使之携带ROWID
- Flink Oracle CDC Connector详解
24k小善
flinkjava大数据
1.FlinkOracleCDCConnector核心功能功能模块描述实时数据捕获实时捕捉Oracle数据库中的DML操作(INSERT,UPDATE,DELETE)。Schema变更支持支持部分DDL操作的检测(如表结构变更)。端到端一致性确保数据从Oracle到Flink的传输过程中的完整性和一致性。可扩展性支持高吞吐量和大规模数据处理需求。容错机制具备断点续传能力,确保在中断后能够从上次的位
- Apache Flink深度解析:现代流处理引擎
暴躁哥
大数据技术apacheflink大数据
好的,我来帮您写一篇关于Flink技术的详细介绍博客:ApacheFlink深度解析:现代流处理引擎一、Flink简介ApacheFlink是一个开源的分布式流处理和批处理统一计算引擎。它提供了数据流上的状态计算、精确一次性语义保证、高吞吐、低延迟等特性,能够运行在所有常见的集群环境中。1.1核心特性统一的流批处理精确一次性语义事件时间处理有状态计算高吞吐和低延迟高可用性配置内存管理二、Flink
- Flink SQL Connector Kafka 核心参数全解析与实战指南
Edingbrugh.南空
kafkaflink大数据flinksqlkafka
FlinkSQLConnectorKafka是连接FlinkSQL与Kafka的核心组件,通过将Kafka主题抽象为表结构,允许用户使用标准SQL语句完成数据读写操作。本文基于ApacheFlink官方文档(2.0版本),系统梳理从表定义、参数配置到实战调优的全流程指南,帮助开发者高效构建实时数据管道。一、依赖配置与环境准备1.1Maven依赖引入在FlinkSQL项目中使用Kafka连接器需添加
- Flink部署与应用——Flink集群模式
黄雪超
从0开始学Flinkflink大数据
Flink集群模式在大数据处理领域,ApacheFlink凭借其卓越的流批一体化处理能力,成为众多企业的首选框架。而Flink集群模式的选择与运用,对于充分发挥Flink的性能优势、满足不同业务场景的需求至关重要。接下来,我们将深入探讨Flink的多种集群模式,剖析其特点、适用场景及相互间的差异。集群部署模式对比Flink的集群部署模式可依据两个关键维度进行分类:一是集群的生命周期和资源隔离方式;
- Spark Streaming 与 Flink 实时数据处理方案对比与选型指南
浅沫云归
后端技术栈小结spark-streamingflinkreal-time
SparkStreaming与Flink实时数据处理方案对比与选型指南实时数据处理在互联网、电商、物流、金融等领域均有大量应用,面对海量流式数据,SparkStreaming和Flink成为两大主流开源引擎。本文基于生产环境需求,从整体架构、编程模型、容错机制、性能表现、实践案例等维度进行深入对比,并给出选型建议。一、问题背景介绍业务场景日志实时统计与告警用户行为实时画像实时订单或交易监控流式ET
- 现代数据湖架构全景解析:存储、表格式、计算引擎与元数据服务的协同生态
讲文明的喜羊羊拒绝pua
大数据架构数据湖SparkIcebergAmoro对象存储
本文全面剖析现代数据湖架构的核心组件,深入探讨对象存储(OSS/S3)、表格式(Iceberg/Hudi/DeltaLake)、计算引擎(Spark/Flink/Presto)及元数据服务(HMS/Amoro)的协作关系,并提供企业级选型指南。一、数据湖架构演进与核心价值数据湖架构演进历程现代数据湖核心价值矩阵维度传统数仓现代数据湖存储成本高(专有硬件)低(对象存储)数据时效性小时/天级分钟/秒级
- 69、Flink 的 DataStream Connector 之 Kafka 连接器详解
猫猫爱吃小鱼粮
Flink-1.19从0到精通flinkkafka大数据
1.概述Flink提供了Kafka连接器使用精确一次(Exactly-once)的语义在Kafkatopic中读取和写入数据。目前还没有Flink1.19可用的连接器。2.KafkaSourcea)使用方法KafkaSource提供了构建类来创建KafkaSource的实例。以下代码片段展示了如何构建KafkaSource来消费“input-topic”最早位点的数据,使用消费组“my-group
- Flink SourceFunction深度解析:数据输入的起点与奥秘
Edingbrugh.南空
flink大数据flink大数据
在Flink的数据处理流程中,StreamGraph构建起了作业执行的逻辑框架,而数据的源头则始于SourceFunction。作为Flink数据输入的关键组件,SourceFunction负责从外部数据源读取数据,并将其转换为Flink作业能够处理的格式。深入理解SourceFunction的原理与实现,对于构建高效、稳定的数据处理链路至关重要。接下来,我们将结合有道云笔记内容,对FlinkSo
- 【Flink实战】 Flink SQL 中处理字符串 `‘NULL‘` 并转换为 `BIGINT`
roman_日积跬步-终至千里
#flink实战sqlflink数据库
文章目录一、问题描述解决方案解释一、问题描述当我们尝试将字符串'NULL'直接转换为BIGINT时,会遇到NumberFormatException,因为'NULL'不是一个有效的数字字符串。为了避免这种错误,我们需要在转换之前进行检查。解决方案我们可以使用CASE语句来实现条件转换。具体步骤如下:使用CASE语句进行条件判断:检查字符串是否为'NULL',如果是'NULL',则返回0;否则,将字
- Flink状态和容错-基础篇
有数的编程笔记
Flinkflink大数据
1.概念flink的状态和容错绕不开3个概念,statebackends和checkpoint、savepoint。本文重心即搞清楚这3部分内容。容错机制是基于在状态快照的一种恢复方式。但是状态和容错要分开来看。什么是状态,为什么需要状态?流计算和批计算在数据源上最大的区别是,流计算中的数据是无边界的,数据持续不断,而批计算中数据是有边界的,在计算时可以一次性将数据全部拿到。在流计算中无法拿到全部
- flink:风控/反欺诈检测系统案例研究1,2,3
菠萝科技
java·未分类flinkflink风控欺诈
https://flink.apache.org/news/2020/01/15/demo-fraud-detection.htmlhttps://flink.apache.org/news/2020/03/24/demo-fraud-detection-2.htmlhttps://flink.apache.org/news/2020/07/30/demo-fraud-detection-3.ht
- 实时反欺诈:基于 Spring Boot 与 Flink 构建信用卡风控系统
程序员leon
风控大数据系列springbootflink后端风控
在金融科技飞速发展的今天,信用卡欺诈手段日益高明和快速。传统的基于批处理的事后分析模式已难以应对实时性要求极高的欺诈场景。本文将详细介绍如何利用SpringBoot和ApacheFlink这对强大的组合,构建一个高性能、可扩展的实时信用卡反欺诈系统。一、核心思想:从“单点”到“模式”传统的反欺诈规则可能只关注单笔交易的某个特征,比如“金额是否过大”。而现代的欺诈行为往往是一种模式(Pattern)
- Flink SQL解析工具类实现:从SQL到数据血缘的完整解析
Edingbrugh.南空
flink大数据flinksql大数据
在大数据处理领域,FlinkSQL作为流批统一的声明式编程接口,已成为数据处理的核心组件。本文将深入解析一个FlinkSQL解析工具类的实现,该工具能够解析FlinkSQL语句,提取表定义、操作关系及数据血缘信息,为数据治理、血缘分析和SQL验证提供基础能力。工具类核心功能概述FlinkParserUtil类实现了FlinkSQL的解析功能,主要包含以下核心能力:SQL过滤与解析:过滤自定义函数声
- 探秘Flink Connector加载机制:连接外部世界的幕后引擎
Edingbrugh.南空
flink大数据flink大数据
在Flink的数据处理生态中,SourceFunction负责数据的输入源头,而真正架起Flink与各类外部存储、消息系统桥梁的,则是Connector。从Kafka消息队列到HDFS文件系统,从MySQL数据库到Elasticsearch搜索引擎,Flink通过Connector实现了与多样化外部系统的交互。而这一切交互的基础,都离不开背后强大且精巧的Connector加载机制。接下来,我们将深
- 探秘Flink Streaming Source Analysis:一个强大的流处理源码解析工具
强妲佳Darlene
探秘FlinkStreamingSourceAnalysis:一个强大的流处理源码解析工具去发现同类优质开源项目:https://gitcode.com/项目简介在大数据实时处理领域,ApacheFlink是一个不可或缺的名字。而flink-streaming-source-analysis项目是由开发者mickey0524创建的一个开源工具,旨在帮助我们更深入地理解和分析Flink流处理的源代码
- Flink SQL 解析器与 Calcite 在大数据处理中的应用
JieLun_C
flinksql大数据
FlinkSQL解析器与Calcite在大数据处理中的应用在大数据处理领域中,FlinkSQL解析器与Calcite是两个重要的组件,它们在解析和优化FlinkSQL查询方面发挥着关键作用。本文将介绍FlinkSQL解析器和Calcite的基本概念,并给出一些示例代码,以帮助读者更好地理解它们的用途和工作原理。FlinkSQL解析器FlinkSQL解析器是Flink提供的一个模块,用于将SQL查询
- Flink系列-背压(反压)
Empty-cup
Flinkflink大数据
目录了解背压什么是背压背压产生的原因背压导致的影响定位背压解决背压了解背压什么是背压在流式处理系统中,如果出现下游消费的速度跟不上上游生产数据的速度,就种现象就叫做背压(backpressure,也叫反压)背压产生的原因下游消费的速度跟不上上游生产数据的速度,可能出现的原因如下:节点有性能瓶颈,可能是该节点所在的机器有网络、磁盘等等故障,机器的网络延迟和磁盘不足、频繁GC、数据热点等原因。数据源生
- Flink中的反压与背压:原理、检测与应对
Edingbrugh.南空
大数据flinkflink大数据
在大数据流处理领域,Flink以其高效、灵活的特性被广泛应用。然而,在数据的高速流动与处理过程中,数据生产速度和消费速度的不匹配问题时常出现,这就引出了流处理系统中的重要概念——反压(Backpressure)和背压(Backpressure)。尽管名称表述略有差异,但二者本质上描述的是同一类情况,它们的有效处理对保障Flink系统的稳定性和性能起着关键作用。一、反压与背压:概念解析反压(Back
- Flink SQL执行流程深度剖析:从SQL语句到分布式执行
Edingbrugh.南空
大数据flinkflinksql分布式
在大数据处理领域,FlinkSQL凭借其强大的处理能力和易用性,成为众多开发者的选择。与其他OLAP引擎类似,FlinkSQL的SQL执行流程大致都需要经过词法解析、语法解析、生成抽象语法树(AST)、校验以及生成逻辑执行计划等步骤。整体流程可笼统地概括为两大阶段:从SQL到Operation的转换,再从Operation到Transformation的转换,最终进入分布式执行阶段。接下来,我们将
- 互联网大数据求职面试:从Zookeeper到Flink的技术探讨
场景:互联网大数据求职面试在一个阳光明媚的下午,小白来到了知名互联网公司,准备接受他人生中最重要的一次面试。他的面试官是以严肃和专业著称的老黑。第一轮提问:分布式系统与协调老黑:小白,你能解释一下Zookeeper在分布式系统中的作用吗?小白:哦,这个简单,Zookeeper是一个分布式协调服务,主要用来解决分布式系统中数据一致性问题,比如选主、配置管理和命名服务。老黑:不错,那你知道Yarn是如
- 数据仓库面试题合集⑥
晴天彩虹雨
数据仓库面试解析集锦数据仓库大数据clickhousekafka
实时指标体系设计+Flink优化实战:面试高频问题+项目答题模板面试中不仅会问“你做过实时处理吗?”,更会追问:“实时指标体系是怎么搭建的?”、“你们的Flink稳定性怎么保证?”本篇聚焦实时指标体系设计与Flink优化场景,帮你答出架构设计力,也答出调优实战感。①面试核心问题导读“你们实时指标是怎么设计的?”“怎么处理指标的去重、延迟和聚合问题?”“你们的Flink作业怎么做资源优化?”“有没有
- flink的多种部署模式
Azoner
flink
##部署模式和运行模式###部署模式-本地local-单机无需分布式资源管理-集群-独立集群standalone-需要flink自身的任务管理工具-jobmanager接收和调度任务-taskmanager执行-on其他资源管理工具yarn/k8s-yarn-注意区分flink的和yarn的taskmanager###运行模式-session-先启动一个集群,保持一个会话,在这个会话中通过客户端提
- 【Flink】Flink自定义流分区器Partitioner、数据倾斜、CustomPartitionerWrapper
九师兄
flink大数据
1.概述20240118今日在群里看到一个人的流计算任务发生数据倾斜了。然后第一怀疑是上游不均匀,然后发现上游是均匀的。但是后面发现他这个分区器是一个新的shufflebybucket但是我在文章中:【Flink】FlinkUI上下游算子并发之间的数据传递方式Partitioner、流分区器记得好像没有这种类型。然后查看了一下,发现果然没有。
- Flink 实现 MySQL CDC 动态同步表结构
腾讯云大数据
数据库javapython大数据mysql
作者:陈少龙,腾讯CSIG高级工程师使用FlinkCDC(ChangeDataCapture)实现数据同步被越来越多的人接受。本文介绍了在数据同步过程中,如何将Schema的变化实时地从MySQL中同步到Flink程序中去。背景MySQL存储的数据量大了之后往往会出现查询性能下降的问题,这时候通过FlinkSQL里的MySQLCDCConnector将数据同步到其他数据存储是常见的一种处理方式。例
- 什么是Hadoop Yarn
ThisIsClark
大数据hadoop大数据分布式
HadoopYARN:分布式集群资源管理系统详解1.什么是YARN?YARN(YetAnotherResourceNegotiator)是ApacheHadoop生态系统中的资源管理和作业调度系统,最初在Hadoop2.0中引入,取代了Hadoop1.0的MapReduce1(MRv1)架构。它的核心目标是提高集群资源利用率,并支持多种计算框架(如MapReduce、Spark、Flink等)在同
- 什么是FlinkSQL中的时态表?以及怎么使用?
北洛学Ai
linqc#
时态表(TemporalTable)是FlinkSQL中一个非常重要的概念,它允许你查询某个时间点的表快照,特别适合处理历史数据或需要关联历史维表的场景。下面我将详细解释时态表的概念、用法和常见应用场景。1.时态表的概念时态表是一个会随时间变化的表,它记录了数据在不同时间点的状态。在FlinkSQL中,时态表通常用于以下场景:历史数据查询:查询某个时间点的表快照,而不是最新数据。维表关联:在流处理
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息