Spring整合Sharding-JDBC分库分表详情
一、概述
最初线上系统的业务量不是很大,业务数据量并不大,比如说单库的数据量在百万级别以下(事实上千万级别以下都还能支撑),那么MySQL的单库即可完成任何增/删/改/查的业务操作。随着业务的发展,单个DB中保存的数据量(用户、订单、计费明细和权限规则等数据)呈现指数级增长,那么各种业务处理操作都会面临单DB的IO读写瓶颈带来的性能问题。
Sharding-JDBC分库分表就是其中一个解决方法,目前用的还挺广泛的,虽然还是有蛮多问题,但是对于公司的普通应用已经足够了。
其实,如果仅仅是分表,Mybatis等中间件就可以帮我们实现简单分表功能,不需要使用Sharding-JDBC,但是Sharding-JDBC可以支持分库,而且支持分库的本地事务(弱事务):
Sharding-JDBC本地事务官方说明:
完全支持非跨库事务,例如:仅分表,或分库但是路由的结果在单库中。
完全支持因逻辑异常导致的跨库事务。例如:同一事务中,跨两个库更新。更新完毕后,抛出空指针,则两个库的内容都能回滚。
不支持因网络、硬件异常导致的跨库事务。例如:同一事务中,跨两个库更新,更新完毕后、未提交之前,第一个库宕机,则只有第二个库数据提交。
首发地址:
品茗IT-同步发布
品茗IT提供在线支持:
一键快速构建Spring项目工具
一键快速构建SpringBoot项目工具
一键快速构建SpringCloud项目工具
一站式Springboot项目生成
Mysql一键生成Mybatis注解Mapper
Mysql一键生成SpringDataRest项目
如果大家正在寻找一个java的学习环境,或者在开发中遇到困难,可以加入我们的java学习圈,点击即可加入,共同学习,节约学习时间,减少很多在学习中遇到的难题。
二、环境配置
本文假设你已经引入Spring必备的一切了,已经是个Spring项目了,如果不会搭建,可以打开这篇文章看一看《Spring和Spring Mvc 5整合详解》。
本篇使用spring-data-jpa做数据库访问,并整合Sharding-JDBC;Mybatis整合Sharding-JDBC相对简单,会在Springboot专题中进行Mybatis与Sharding-JDBC的整合。
2.1 maven依赖
使用Spring-data-jpa需要引入spring-data-jpa,因为是非Springboot项目,我们不能通过starter引入,需要引入spring-data-jpa、javax.transaction-api、hibernate-core。
亲测!Sharding-JDBC使用的mysql-connector-java不能为6.0版本,6.0的所有版本都不能用,换成5.0版本最为稳妥。
4.0.0
cn.pomit
SpringWork
0.0.1-SNAPSHOT
SpringDataJpa
jar
SpringDataJpa
http://maven.apache.org
org.springframework
spring-web
org.springframework
spring-context
org.springframework
spring-orm
mysql
mysql-connector-java
log4j
log4j
org.apache.commons
commons-dbcp2
org.springframework.data
spring-data-jpa
2.0.10.RELEASE
javax.transaction
javax.transaction-api
1.2
org.hibernate
hibernate-core
5.2.17.Final
compile
jboss-transaction-api_1.2_spec
org.jboss.spec.javax.transaction
SpringDataJpa
父模块可以在https://www.pomit.cn/spring/SpringWork/pom.xml获取。
2.2 Spring配置
配置文件分为两部分,一部分是数据源的配置,数据源的配置包含sharding-jdbc的配置,因为sharding-jdbc生成了统一的数据源;包含一部分是jpa的配置。
2.2.1 Shardingjdbc配置
spring-shardingjdbc.xml:
classpath:db.properties
这里:
配置了两个数据源ds_master和ds_slave,属于不同的库
配置了shardingJdbc的主从查询策略,randomStrategy。需要注意的是读操作默认是从库,如果从库只有一个,那就是这个库
chatTableStrategy配置了t_chat_info表的分表策略。
chatKeyGenerator配置了注解的策略,并没有什么鸟用,主键还是要自己生成的。
shardingDataSource,这个是最主要的配置,将不同的数据源整合成统一的数据源。里面的逻辑是:分库(先指明哪是主库,哪是从库,策略是啥);分表(指明了分表的所有表,分表的策略,分表的逻辑表)。
2.2.2 Spring-data-jpa配置
spring-jpa.xml:
需要配置数据源、jdbcTemplate、entityManagerFactory、transactionManager和jpa:repositories。
org.hibernate.dialect.MySQLDialect
true
这里面,需要注意的是:
entityManagerFactory,是实体和数据库选择信息。
jpa:repositories,指明Spring-data-jpa的repositories地址。就是我们的数据库交互层。
transactionManager,事务处理器。
tx:annotation-driven:开启事务注解。
db.properties中存放数据库的地址端口等连接信息。
2.2.3 配置文件
db.properties:
#主库
db.url=jdbc:mysql://127.0.0.1:3306/boot?useUnicode=true&characterEncoding=utf8&serverTimezone=UTC
db.username=cff
db.password=123456
#db.dirverClass=com.mysql.cj.jdbc.Driver
#sharding-jdbc不支持6.0以上版本,不得不降级。
db.dirverClass=com.mysql.jdbc.Driver
#从库
db.slave.url=jdbc:mysql://127.0.0.1:3306/cff?useUnicode=true&characterEncoding=utf8&serverTimezone=UTC
db.slave.username=cff
db.slave.password=123456
db.slave.dirverClass=com.mysql.jdbc.Driver
#雪花算法的机器id
worker.id=1
三、测试项目
上面都配置完成之后,代码的实现上和普通写代码没区别了。
需要注意的是,增删改都要带上分表字段,查询可以不带分表字段;分表字段就是上面定义的sharding-column="live_id"
中的live_id
.
3.1 Dao数据访问层
直接写一个继承JpaRepository的dao即可。。但是需要注意的是,如果有不带分表字段live_id的查询,需要自己写一个映射,比如下面的findByChatNoAndLiveId
.
ChatInfoDao :
package cn.pomit.springwork.sharding.jdbc.dao;
import org.springframework.data.jpa.repository.JpaRepository;
import org.springframework.stereotype.Repository;
import cn.pomit.springwork.sharding.jdbc.domain.ChatInfo;
@Repository
public interface ChatInfoDao extends JpaRepository {
ChatInfo findByChatNoAndLiveId(Long chatNo, Integer liveId);
}
3.2 Service逻辑层
没啥逻辑,就是个调用。
ChatInfoService:
package cn.pomit.springwork.sharding.jdbc.service;
import java.util.List;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import cn.pomit.springwork.sharding.jdbc.dao.ChatInfoDao;
import cn.pomit.springwork.sharding.jdbc.domain.ChatInfo;
@Service
public class ChatInfoService {
@Autowired
ChatInfoDao tChatInfoDao;
@Autowired
SnowflakeIdGenerator snowflakeIdGenerator;
public void save(ChatInfo tChatInfo) {
tChatInfo.setChatNo(snowflakeIdGenerator.nextId());
tChatInfoDao.save(tChatInfo);
}
public void delete(ChatInfo tChatInfo) {
tChatInfoDao.delete(tChatInfo);
}
public void update(ChatInfo tChatInfo) {
tChatInfoDao.save(tChatInfo);
}
public List findAll() {
return tChatInfoDao.findAll();
}
public ChatInfo findByChatNoAndLiveId(Integer liveId, Long id) {
return tChatInfoDao.findByChatNoAndLiveId(id, liveId);
}
public ChatInfo findById(Long id) {
return tChatInfoDao.findById(id).orElse(null);
}
}
3.3 Web请求层
下面的web请求层,涵盖了sharding-jdbc大多数情况下的使用。
ShardingRest :
package cn.pomit.springwork.sharding.jdbc.web;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import cn.pomit.springwork.sharding.jdbc.domain.ChatInfo;
import cn.pomit.springwork.sharding.jdbc.dto.ResultModel;
import cn.pomit.springwork.sharding.jdbc.service.ChatInfoService;
@RestController
@RequestMapping("/sharing")
public class ShardingRest {
@Autowired
ChatInfoService chatInfoService;
@RequestMapping(value = "/add", method = { RequestMethod.POST })
public ResultModel add(@RequestBody ChatInfo chatInfo) {
chatInfoService.save(chatInfo);
return ResultModel.ok();
}
/**
* 查询也要携带分表字段,方便查找数据
* @param chatInfo
* @return
*/
@RequestMapping(value = "/info", method = { RequestMethod.GET })
public ResultModel info(@RequestParam("liveId") Integer liveId, @RequestParam("chatNo") Long chatNo) {
return ResultModel.ok(chatInfoService.findByChatNoAndLiveId(liveId,chatNo));
}
/**
* 不带分表字段查询
* @param chatInfo
* @return
*/
@RequestMapping(value = "/detail", method = { RequestMethod.GET })
public ResultModel detail(@RequestParam("chatNo") Long chatNo) {
return ResultModel.ok(chatInfoService.findById(chatNo));
}
@RequestMapping(value = "/delete", method = { RequestMethod.POST })
public ResultModel delete(@RequestBody ChatInfo chatInfo) {
chatInfoService.delete(chatInfo);
return ResultModel.ok();
}
@RequestMapping(value = "/update", method = { RequestMethod.POST })
public ResultModel update(@RequestBody ChatInfo chatInfo) {
chatInfoService.update(chatInfo);
return ResultModel.ok();
}
}
四、雪花算法
SnowflakeIdGenerator :
package cn.pomit.springwork.sharding.jdbc.service;
import javax.annotation.PostConstruct;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;
/**
* SnowFlake 算法修改
* 0 - 0000000000 00 - 0000000000 0000000000 0000000000 000000000 - 0000 - 00000000
* 符号位 -12位年月位(表示yyMM,最大4096,即可用至2040年)-39位时间戳 (可用17年,即可用至2035年)-4位机器ID(最大16,即可部署16个节点)-8位序列号(z最大256)
* @author yujinlong
*
*/
@Component
public class SnowflakeIdGenerator {
// ==============================Fields===========================================
/** 开始时间截 (2018-01-01) */
private final long twepoch = 1514736000000L;
/** 时间戳占的位数 */
public static final long timestampBits = 39L;
/** 机器id所占的位数 */
public static final long workerIdBits = 4L;
/** 支持的最大机器id,结果是15 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */
private final long maxWorkerId = -1L ^ (-1L << workerIdBits);
/** 序列在id中占的位数 */
public static final long sequenceBits = 8L;
/** 机器ID向左移6位 */
private final long workerIdShift = sequenceBits;
/** 时间截向左移12位(4+8) */
private final long timestampLeftShift = sequenceBits + workerIdBits;
/** 年月标识左移51位(39 + 4 + 8)*/
private final long yearMonthLeftShift = sequenceBits + workerIdBits + timestampBits;
/** 生成序列的掩码,这里为255 */
private final long sequenceMask = -1L ^ (-1L << sequenceBits);
/** 工作机器ID(0~16) */
@Value("${worker.id}")
private long workerId;
/** 毫秒内序列(0~256) */
private long sequence = 0L;
/** 上次生成ID的时间截 */
private long lastTimestamp = -1L;
// ==============================Methods==========================================
@PostConstruct
public void init(){
System.out.println(workerId);
if(this.workerId < 0 || this.workerId > maxWorkerId){
throw new RuntimeException("workerId(" + this.workerId + ") is out of range [0, 15]");
}
}
/**
* 获得下一个ID (该方法是线程安全的)
* @return SnowflakeId
*/
public synchronized long nextId(long yyMM) {
long timestamp = timeGen();
//如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
if (timestamp < lastTimestamp) {
throw new RuntimeException(
String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
}
//如果是同一时间生成的,则进行毫秒内序列
if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask;
//毫秒内序列溢出
if (sequence == 0) {
//阻塞到下一个毫秒,获得新的时间戳
timestamp = tilNextMillis(lastTimestamp);
}
} else {
//时间戳改变,毫秒内序列重置
sequence = 0L;
}
//上次生成ID的时间截
lastTimestamp = timestamp;
//移位并通过或运算拼到一起组成64位的ID
long preId = (yyMM << yearMonthLeftShift) | ((timestamp - twepoch) << timestampLeftShift) | (workerId << workerIdShift) | sequence;
return preId;
}
/**
* 获得不带年月位的id
* @return
*/
public synchronized long nextId() {
long timestamp = timeGen();
//如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
if (timestamp < lastTimestamp) {
throw new RuntimeException(
String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
}
//如果是同一时间生成的,则进行毫秒内序列
if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask;
//毫秒内序列溢出
if (sequence == 0) {
//阻塞到下一个毫秒,获得新的时间戳
timestamp = tilNextMillis(lastTimestamp);
}
} else {
//时间戳改变,毫秒内序列重置
sequence = 0L;
}
//上次生成ID的时间截
lastTimestamp = timestamp;
//移位并通过或运算拼到一起组成64位的ID
long preId = ((timestamp - twepoch) << timestampLeftShift) | (workerId << workerIdShift) | sequence;
return preId;
}
/**
* 阻塞到下一个毫秒,直到获得新的时间戳
* @param lastTimestamp 上次生成ID的时间截
* @return 当前时间戳
*/
protected long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}
/**
* 返回以毫秒为单位的当前时间
* @return 当前时间(毫秒)
*/
protected long timeGen() {
return System.currentTimeMillis();
}
public void setWorkerId(long workerId) {
this.workerId = workerId;
}
}
五、过程中用到的完整实体和Service
ChatInfo:
package cn.pomit.springwork.sharding.jdbc.domain;
import java.util.Date;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
@Entity
@Table(name = "t_chat_info")
public class ChatInfo {
@Id
@Column(name = "chat_no")
private Long chatNo;
@Column(name = "user_id")
private Integer userId;
@Column(name = "live_id")
private Integer liveId;
@Column(name = "nick_name")
private String nickName;
@Column(name = "create_time")
private Date createTime;
@Column(name = "delete_flag")
private Integer deleteFlag;
@Column(name = "read_flag")
private Integer readFlag;
public void setChatNo(Long chatNo) {
this.chatNo = chatNo;
}
public Long getChatNo() {
return chatNo;
}
public Integer getUserId() {
return userId;
}
public void setUserId(Integer userId) {
this.userId = userId;
}
public Integer getLiveId() {
return liveId;
}
public void setLiveId(Integer liveId) {
this.liveId = liveId;
}
public String getNickName() {
return nickName;
}
public void setNickName(String nickName) {
this.nickName = nickName;
}
public Date getCreateTime() {
return createTime;
}
public void setCreateTime(Date createTime) {
this.createTime = createTime;
}
public Integer getDeleteFlag() {
return deleteFlag;
}
public void setDeleteFlag(Integer deleteFlag) {
this.deleteFlag = deleteFlag;
}
public Integer getReadFlag() {
return readFlag;
}
public void setReadFlag(Integer readFlag) {
this.readFlag = readFlag;
}
}
ResultModel:
package cn.pomit.springwork.sharding.jdbc.dto;
public class ResultModel {
private String errorCode;
private String message;
private Object data;
public ResultModel() {
}
public ResultModel(String errorCode) {
this.errorCode = errorCode;
}
public ResultModel(String errorCode, String message) {
this.errorCode = errorCode;
this.message = message;
}
public ResultModel(String errorCode, String message, Object data) {
this.errorCode = errorCode;
this.message = message;
this.data = data;
}
public String getErrorCode() {
return errorCode;
}
public void setErrorCode(String errorCode) {
this.errorCode = errorCode;
}
public String getMessage() {
return message;
}
public void setMessage(String message) {
this.message = message;
}
public Object getData() {
return data;
}
public void setData(Object data) {
this.data = data;
}
public static ResultModel ok() {
ResultModel resultModel = new ResultModel("0000", "成功");
return resultModel;
}
public static ResultModel ok(Object data) {
ResultModel resultModel = new ResultModel("0000", "成功");
resultModel.setData(data);
return resultModel;
}
public static ResultModel error() {
ResultModel resultModel = new ResultModel("1111", "失败");
return resultModel;
}
public static ResultModel resultModel(String message) {
ResultModel resultModel = new ResultModel("1111", message);
return resultModel;
}
}
六、过程中得到的结论
得出的结论如下:
- 可以查看首发地址Spring整合Sharding-JDBC分库分表详情进行查看
快速构建项目
Spring组件化构建
SpringBoot组件化构建
SpringCloud服务化构建
喜欢这篇文章么,喜欢就加入我们一起讨论Spring技术吧!