\arch\arm\mach-mx6\board-mx6q_sabresd.c
1 static struct i2c_board_info i2c_board_info_rtc[] __initdata = { 2 //isl1208 does not work on the 1st board that's sent to Korea, but we should enbaled it later. 3 #if 1 4 { 5 I2C_BOARD_INFO("isl1208", 0x6F), 6 //.irq = gpio_to_irq(CYNO_GPIO_R10), 7 }, 8 #else 9 //pcf8563 is no longer usned. 10 { 11 I2C_BOARD_INFO("pcf8563", 0x51), 12 //.irq = gpio_to_irq(CYNO_GPIO_R10), 13 }, 14 #endif 15 };
这个busnum号决定了adapter->nr之间的关系,如果相等这把这个总线设备和适配器连接起来
i2c_register_board_info(2, i2c_board_info_rtc, ARRAY_SIZE(i2c_board_info_rtc));
下面我们再来分析下i2c_register_board_info这个文件的定义
在drivers/i2c/i2c-boardinfo.c文件中我们找到这个函数的定义:
1 int __init 2 i2c_register_board_info(int busnum, //这个busnum号决定了adapter->nr之间的关系,如果相等这把这个总线设备和适配器连接起来 3 struct i2c_board_info const *info, unsigned len) 4 { 5 int status; 6 7 down_write(&__i2c_board_lock); 8 9 /* dynamic bus numbers will be assigned after the last static one */ 10 if (busnum >= __i2c_first_dynamic_bus_num) 11 __i2c_first_dynamic_bus_num = busnum + 1; 12 13 for (status = 0; len; len--, info++) { 14 struct i2c_devinfo *devinfo; 15 16 devinfo = kzalloc(sizeof(*devinfo), GFP_KERNEL); 17 if (!devinfo) { 18 pr_debug("i2c-core: can't register boardinfo!\n"); 19 status = -ENOMEM; 20 break; 21 } 22 23 devinfo->busnum = busnum; 24 devinfo->board_info = *info; 25 list_add_tail(&devinfo->list, &__i2c_board_list); 26 } 27 28 up_write(&__i2c_board_lock); 29 30 return status; 31 }
在这个函数里面定义了bus_num以及RTC相关信息
下面我们针对这个设备具体分析
我们在/drivers/rtc/rtc-isl1208.c这个文件
static const struct i2c_device_id isl1208_id[] = {
{ "isl1208", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, isl1208_id);
static struct i2c_driver isl1208_driver = {
.driver = {
.name = "rtc-isl1208",
},
.probe = isl1208_probe,
.remove = isl1208_remove,
.id_table = isl1208_id,
};
可以看到isl1208_driver真是这个设备所支持的驱动
static int i2c_register_adapter(struct i2c_adapter *adap)
{
int res = 0, dummy;
mutex_init(&adap->bus_lock); //初始化保护i2c适配器的互斥锁
mutex_init(&adap->clist_lock); //初始化保护adap->clients的锁
INIT_LIST_HEAD(&adap->clients); //初始化i2c适配器上介入的设备(client)链表
mutex_lock(&core_lock);
//初始化adap->dev然后注册该设备
if (adap->dev.parent == NULL) {
adap->dev.parent = &platform_bus;
pr_debug("I2C adapter driver [%s] forgot to specify "
"physical device\n", adap->name);
}
sprintf(adap->dev.bus_id, "i2c-%d", adap->nr);
adap->dev.release = &i2c_adapter_dev_release;
adap->dev.class = &i2c_adapter_class;
res = device_register(&adap->dev);
if (res)
goto out_list;
dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);
//适配器驱动注册进内核后,对系统中现有的两种设备进行绑定。
if (adap->nr < __i2c_first_dynamic_bus_num)//__i2c_first_dynamic_bus_num表示第一个动态分配的设备号
i2c_scan_static_board_info(adap); //如果适配器号和设备好一致,则会进行设备和适配器的绑定,如果不一致,则会执行下面的函数
dummy = bus_for_each_drv(&i2c_bus_type, NULL, adap,
i2c_do_add_adapter);
out_unlock:
mutex_unlock(&core_lock);
return res;
out_list:
idr_remove(&i2c_adapter_idr, adap->nr);
goto out_unlock;
}
注册适配器后,开始调用 i2c_scan_static_board_info(adap);查找i2c_board_info的相关设备的注册信息
__i2c_board_list中查找 我们在板级文件中以把相关i2c——device的信息注册到这个双向链表中了。。struct i2c_devinfo相对比,如果找到了,就会调用i2c_new_device()把device和适配器绑定在一起,
static void i2c_scan_static_board_info(struct i2c_adapter *adapter)
{
struct i2c_devinfo *devinfo;
mutex_lock(&__i2c_board_lock);
list_for_each_entry(devinfo, &__i2c_board_list, list) {
if (devinfo->busnum == adapter->nr //如果device编号和adapter编号一致,则会调用i2c_new_device,把device和adapter绑定在一起
&& !i2c_new_device(adapter,
&devinfo->board_info))
printk(KERN_ERR "i2c-core: can't create i2c%d-x\n",
i2c_adapter_id(adapter),
devinfo->board_info.addr);
}
mutex_unlock(&__i2c_board_lock);
}
下面来分析这个i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
struct i2c_client *
i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
{
struct i2c_client *client;
int status;
client = kzalloc(sizeof *client, GFP_KERNEL);
if (!client)
return NULL;
client->adapter = adap; //在这个地方适配器和i2c_device 绑定
client->dev.platform_data = info->platform_data;
if (info->archdata)
client->dev.archdata = *info->archdata;
client->flags = info->flags;
client->addr = info->addr;//这个地方决定了设备的地址
client->irq = info->irq;
strlcpy(client->name, info->type, sizeof(client->name));
/* Check for address validity */
status = i2c_check_client_addr_validity(client);
if (status) {
dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n",
client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr);
goto out_err_silent;
}
/* Check for address business */
status = i2c_check_addr_busy(adap, client->addr);
if (status)
goto out_err;
client->dev.parent = &client->adapter->dev;
client->dev.bus = &i2c_bus_type;
client->dev.type = &i2c_client_type;
client->dev.of_node = info->of_node;
dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),
client->addr);
status = device_register(&client->dev);这个设备被绑定到了总线上面,但是这个设备所支持的drivers呢??????
if (status)
goto out_err;
dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n",
client->name, dev_name(&client->dev));
return client;
out_err:
dev_err(&adap->dev, "Failed to register i2c client %s at 0x%02x "
"(%d)\n", client->name, client->addr, status);
out_err_silent:
kfree(client);
return NULL;
}
下面分析 dummy = bus_for_each_drv(&i2c_bus_type, NULL, adap, i2c_do_add_adapter);这个函数
static int i2c_do_add_adapter(struct i2c_driver *driver,
struct i2c_adapter *adap)
{
/* Detect supported devices on that bus, and instantiate them */
i2c_detect(adap, driver); 通过这个函数又会把设配器和设备绑定在一起,这次依靠的是driver的地址是否存在而绑定的
/* Let legacy drivers scan this bus for matching devices */
if (driver->attach_adapter) {
dev_warn(&adap->dev, "%s: attach_adapter method is deprecated\n",
driver->driver.name);
dev_warn(&adap->dev, "Please use another way to instantiate "
"your i2c_client\n");
/* We ignore the return code; if it fails, too bad */
driver->attach_adapter(adap);
}
return 0;
}
在struct i2c_adapter 注册到内核中后,内核时怎样把已经注册进系统中的i2c设备设备与刚注册进内核的适配器进行绑定的。分两种情况一是在板级用 i2c_register_board_info注册的,其二是通过各种struct i2c_driver注册的。其中驱动注册又有两种方法,一种是新的总线式驱动一种是老式的,这里我们对老式的方法不做介绍,老式的方法在内核中也慢慢的消亡。
可能很多人有以后这个该死的adapter什么时候注册,那我现在说先注册顺序(讲解针对板级文件中设备的注册分析)
步骤1:i2c_register_board_info(2, i2c_board_info_rtc, ARRAY_SIZE(i2c_board_info_rtc));
注册这个板级文件后就会把这个device的相关信息存储到__i2c_board_list
步骤2:对于静态的注册adapter这个适配器,这个早就设定好了,所以直接注册,在这个函数i2c_register_adapter的后面几个函数就会决定设配器和device的绑定
int i2c_add_numbered_adapter(struct i2c_adapter *adap)- {
- int id;
- int status;
- if (adap->nr & ~MAX_ID_MASK)
- return -EINVAL;
- retry:
- if (idr_pre_get(&i2c_adapter_idr, GFP_KERNEL) == 0)
- return -ENOMEM;
- mutex_lock(&core_lock);
- /* "above" here means "above or equal to", sigh;
- * we need the "equal to" result to force the result
- */
- status = idr_get_new_above(&i2c_adapter_idr, adap, adap->nr, &id);
- if (status == 0 && id != adap->nr) {
- status = -EBUSY;
- idr_remove(&i2c_adapter_idr, id);
- }
- mutex_unlock(&core_lock);
- if (status == -EAGAIN)
- goto retry;
- if (status == 0)
- status = i2c_register_adapter(adap);
- return status;
- }
if (adap->nr < __i2c_first_dynamic_bus_num)//__i2c_first_dynamic_bus_num表示第一个动态分配的设备号
i2c_scan_static_board_info(adap); //如果适配器号和设备好一致,则会进行设备和适配器的绑定,如果不一致,则会执行下面的函数
dummy = bus_for_each_drv(&i2c_bus_type, NULL, adap,
i2c_do_add_adapter);
步骤3:现在设配器和设备已经绑定了,那设备的驱动什么时候能找到这个设备呢,我们继续分析
static struct i2c_driver isl1208_driver = {
.driver = {
.name = "rtc-isl1208",
},
.probe = isl1208_probe,
.remove = isl1208_remove,
.id_table = isl1208_id,
};
在driver/rtc/rtc-isli1208.c文件中最好几行代码会注册这个驱动,
static int __init
isl1208_init(void)
{
return i2c_add_driver(&isl1208_driver);
}
static void __exit
isl1208_exit(void)
{
i2c_del_driver(&isl1208_driver);
}
我们再来分析这个i2c_add_driver函数,也许会有一点感悟
static inline int i2c_add_driver(struct i2c_driver *driver)
{
return i2c_register_driver(THIS_MODULE, driver);
}
/*
* An i2c_driver is used with one or more i2c_client (device) nodes to access
* i2c slave chips, on a bus instance associated with some i2c_adapter.
*/
int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
{
int res;
/* Can't register until after driver model init */
if (unlikely(WARN_ON(!i2c_bus_type.p)))
return -EAGAIN;
/* add the driver to the list of i2c drivers in the driver core */
driver->driver.owner = owner;
driver->driver.bus = &i2c_bus_type;
/* When registration returns, the driver core
* will have called probe() for all matching-but-unbound devices.
*/
res = driver_register(&driver->driver);
if (res)
return res;
/* Drivers should switch to dev_pm_ops instead. *///这个地方会通过probe函数实现
if (driver->suspend)
pr_warn("i2c-core: driver [%s] using legacy suspend method\n",
driver->driver.name);
if (driver->resume)
pr_warn("i2c-core: driver [%s] using legacy resume method\n",
driver->driver.name);
pr_debug("i2c-core: driver [%s] registered\n", driver->driver.name);
INIT_LIST_HEAD(&driver->clients);
/* Walk the adapters that are already present */
i2c_for_each_dev(driver, __process_new_driver);
return 0;
}
这个函数最下面有个i2c_for_each_dev(driver, __process_new_driver);这个地方不太理解,个人认为是那些可插拔设备寻找合适的适配器的方法
那到底设备和驱动是怎么结合到一起的呢,正确的设备是怎么配对正确的驱动的呢,这个最主要的功臣当然非probe函数莫属啦
那我们就来看看.probe = isl1208_probe这个探测函数吧
isl1208_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
int rc = 0;
struct rtc_device *rtc;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) //检查设备有哪些功能
return -ENODEV;
if (isl1208_i2c_validate_client(client) < 0) //判定这个设备是否是isl1208驱动所支持的设备,如过不是probe探测失败,
return -ENODEV;
dev_info(&client->dev,
"chip found, driver version " DRV_VERSION "\n");
if (client->irq > 0) {
rc = request_threaded_irq(client->irq, NULL,isl1208_rtc_interrupt,IRQF_SHARED,
isl1208_driver.driver.name, client);//申请中断
if (!rc) {
device_init_wakeup(&client->dev, 1);
enable_irq_wake(client->irq);
} else {
dev_err(&client->dev,
"Unable to request irq %d, no alarm support\n",
client->irq);
client->irq = 0;
}
}
rtc = rtc_device_register(isl1208_driver.driver.name,
&client->dev, &isl1208_rtc_ops, THIS_MODULE); //关键中的关键终于到来,设备和驱动完美的结合,特备强调isl1208_rtc_ops,我们看看它代表什么。
////////////////////static const struct rtc_class_ops isl1208_rtc_ops = {
proc — 一个虚拟文件系统
/proc 文件系统是一种内核和内核模块用来向进程 (process) 发送信息的机制 (所以叫做 /proc)。这个伪文件系统让你可以和内核内部数据结构进行交互,获取 有关进程的有用信息,在运行中 (on the fly) 改变设置 (通过改变内核参数)。 与其他文件系统不同,/proc 存在于内存之中而不是硬盘上。
/////////////////// .proc = isl1208_rtc_proc, 这些函数不都是定义在rtc-isl1208.c这个文件里面吗,此处的配置就是为了用户在调用rtc-isl1208这个设备的时候,能够对这个设备进行相应的读写操作
////////////////// .read_time = isl1208_rtc_read_time,
///////////////// .set_time = isl1208_rtc_set_time,
//////////////// .read_alarm = isl1208_rtc_read_alarm,
//////// .set_alarm = isl1208_rtc_set_alarm,
/////////////////////// };
if (IS_ERR(rtc)) {
rc = PTR_ERR(rtc);
goto exit_free_irq;
}
i2c_set_clientdata(client, rtc);
rc = isl1208_i2c_get_sr(client);
if (rc < 0) {
dev_err(&client->dev, "reading status failed\n");
goto exit_unregister;
}
if (rc & ISL1208_REG_SR_RTCF)
dev_warn(&client->dev, "rtc power failure detected, "
"please set clock.\n");
rc = sysfs_create_group(&client->dev.kobj, &isl1208_rtc_sysfs_files);
if (rc)
goto exit_unregister;
return 0;
exit_unregister:
rtc_device_unregister(rtc);
exit_free_irq:
if (client->irq)
free_irq(client->irq, client);
return rc;
}
至此整个I2C的体系的分析就告一段落了,下一步,usb-mouse的分析哦
我敢肯定这里有很多不对的地方,如果被某人发现,请给我留言,谢谢 我定会更正