Python高级应用程序设计任务

Python高级应用程序设计任务要求

用Python实现一个面向主题的网络爬虫程序,并完成以下内容:
(注:每人一题,主题内容自选,所有设计内容与源代码需提交到博客园平台)

一、主题式网络爬虫设计方案(15分)
1.主题式网络爬虫名称

豆瓣电影排行榜

2.主题式网络爬虫爬取的内容与数据特征分析

2.1爬取的内容

    电影名,种类,导演,来源地,时间等

2.2数据特征分析

    分析不同电影的评价

3.主题式网络爬虫设计方案概述(包括实现思路与技术难点)

              1、通过requests的get方法请求网站地址,并进行头部信息验证

    2、BeautifulSoup网页解析

    3、判断所要的数据是否存在,并进行切片处理

    4、并通过循环进行翻页处理

    5、通过os、DataFrame进行数据的保存,以便后期进行数据分析和数据清洗

二、主题页面的结构特征分析(15分)
1.主题页面的结构特征

Python高级应用程序设计任务_第1张图片
2.Htmls页面解析

Python高级应用程序设计任务_第2张图片

3.节点(标签)查找方法与遍历方法

使用bs4提供的find_all()方法,按照条件返回标签内容。
(必要时画出节点树结构)

三、网络爬虫程序设计(60分)
爬虫程序主体要包括以下各部分,要附源代码及较详细注释,并在每部分程序后面提供输出结果的截图。
1.数据爬取与采集

import requests  
import xlwt  
from bs4 import BeautifulSoup 
from collections import Counter 
import collections
import matplotlib.pyplot as plt 
from pylab import mpl  
mpl.rcParams['font.sans-serif'] = ['SimHei'] 
mpl.rcParams['font.size'] = 6.0

import time 
import random

import jieba # 中文分词包
from wordcloud import WordCloud # 词云包
import re  # 正则表达式包

headers = {
    'user-agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.108 Safari/537.36',
    'Host':'movie.douban.com'
    }

## data needed
movie_list_english_name = []
movie_list_chinese_name = []
director_list = []
time_list = []
star_list = []
reviewNum_list = []
quote_list = []
nation_list = []
category_list = []

num = 0
for i in range(0, 10):
    link = 'https://movie.douban.com/top250?start=' 
    
    soup = BeautifulSoup(res.text, "lxml")  
    div_title_list = soup.find_all('div', class_ = 'hd') 
    div_info_list = soup.find_all('div', class_ = 'bd')
    div_star_list = soup.find_all('div', class_ = 'star')
    div_quote_list = soup.find_all('p', class_ = 'quote')
    
    for each in div_title_list:
        movie = each.a.span.text.strip() # 得到第一个字段
        movie_list_chinese_name.append(movie)
    # 通过css 定位得到第二个字段,从而得到英文名字  
    div_title_list2 = soup.select('div.hd > a > span:nth-of-type(2)')
    for each in div_title_list2:
        movie = each.text
        #movie = movie.replace(u'\xa0', u' ')
        movie = movie.strip('\xa0/\xa0') # 去掉英文名字中的空格
        movie_list_english_name.append(movie)
    
    for each in div_info_list:
        num += 1
        info = each.p.text.strip()
        if len(info) < 3: # 筛选掉不符合条件的信息
            continue
        
        # 搜索电影上映年代
        lines = info.split('\n')  # 将信息按照换行符分割成不同句子
        time_start = lines[1].find('20')
        if time_start < 0:
            time_start = lines[1].find('19')
        time_len = lines[1][time_start : time_start + 4]
        time_list.append(time_len)
        time_end = time_start + 4
        
        # 搜索电影导演中文名
        end = info.find('')
        if end < 0:
            end = info.find('...')
        director = info[4 : end - 3]
        director_list.append(director)
        
        # 搜索电影来源地
        frequent = 0
        start = 0
        end = 0
        line2 = lines[1]
        for j in range(len(line2)):
            if line2[j] == '\xa0':
                frequent += 1
            if frequent == 2 and start == 0:
                start = j + 1
            if frequent == 3:
                end = j
                break
        nation = line2[start : end]
        nation_list.append(nation)
        
        
        # 搜索电影类型
        frequent = 0
        start = 0
        for j in range(len(line2)):
            if line2[j] == '\xa0':
                frequent += 1
            if frequent == 4 and start == 0:
                start = j + 1
        category = line2[start : len(line2)]
        category_list.append(category)
    
    # 搜索电影评分
    for each in div_star_list:
        info = each.text.strip()
        star = float(info[0 : 3])
        star_list.append(star)
        end = info.find('')
        reviewNum = int(info[3 : end])
        reviewNum_list.append(reviewNum)
    
    # 搜索电影代表评论
    for each in div_quote_list:
        info = each.text.strip()
        quote_list.append(info)
    
file = xlwt.Workbook()

table = file.add_sheet('sheet1', cell_overwrite_ok = True)

table.write( 0, 0, "排名")
table.write( 0, 1, "电影中文名")
table.write( 0, 2, "电影其他名")
table.write( 0, 3, "时间")
table.write( 0, 4, "导演")
table.write( 0, 5, "国家或地区")
table.write( 0, 6, "评分")
table.write( 0, 7, "评分人数")
table.write( 0, 8, "电影类型")
table.write( 0, 9, '代表性评论')

for i in range(len(nation_list)):
    table.write(i + 1, 0, i + 1)
    table.write(i + 1, 1, movie_list_chinese_name[i])
    table.write(i + 1, 2, movie_list_english_name[i])
    table.write(i + 1, 3, time_list[i])
    table.write(i + 1, 4, director_list[i])
    table.write(i + 1, 5, nation_list[i])
    table.write(i + 1, 6, star_list[i])
    table.write(i + 1, 7, reviewNum_list[i])
    table.write(i + 1, 8, category_list[i])
    table.write(i + 1, 9, quote_list[i])

 # 导出到 xls 文件里   
file.save('豆瓣 top 10 电影爬虫抓取.xls')

Python高级应用程序设计任务_第3张图片


2.对数据进行清洗和处理
3.文本分析(可选):

jieba分词、wordcloud可视化
4.数据分析与可视化

star_dict = dict(zip(movie_list_chinese_name, star_list))
star_sort = sorted(star_dict.items(), key = lambda x: x[1], reverse = True) #排序 
star_sort = collections.OrderedDict(star_sort)
values = []
labels=[]
for i in range(10):
    labels.append(list(star_sort.keys())[i])
    values.append(list(star_sort.values())[i])
bar = plt.barh(range(10), width = values, tick_label = labels, color = 'rgbycmrgby')
for i, v in enumerate(values): # 柱状图添加数字
    plt.text(v + 0.05, i - 0.1, str(v), color = 'blue', fontweight = 'bold')
plt.xlim(xmax = 10, xmin = 8)
plt.title('评分最高的十部电影')
plt.show()

Python高级应用程序设计任务_第4张图片

# 评分人数最多的十部电影
review_dict = dict(zip(movie_list_chinese_name, reviewNum_list))
review_sort = sorted(review_dict.items(), key = lambda x: x[1], reverse = True) #排序 
review_sort = collections.OrderedDict(review_sort)
values = []
labels=[]
for i in range(10):
    labels.append(list(review_sort.keys())[i])
    values.append(list(review_sort.values())[i])
bar = plt.barh(range(10), width = values, tick_label = labels, color = 'rgbycmrgby')
for i, v in enumerate(values): # 柱状图添加数字
    plt.text(v + 10000, i - 0.1, str(v), color = 'blue', fontweight = 'bold')
plt.xlim(xmax = 1450000, xmin = 400000)
plt.title('评分人数最多的十部电影')
plt.show( )

Python高级应用程序设计任务_第5张图片


(例如:数据柱形图、直方图、散点图、盒图、分布图、数据回归分析等)
5.数据持久化
6.附完整程序代码

import requests  
import xlwt  
from bs4 import BeautifulSoup 
from collections import Counter 
import collections
import matplotlib.pyplot as plt 
from pylab import mpl  
mpl.rcParams['font.sans-serif'] = ['SimHei'] 
mpl.rcParams['font.size'] = 6.0

import time 
import random

import jieba # 中文分词包
from wordcloud import WordCloud # 词云包
import re  # 正则表达式包

headers = {
    'user-agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.108 Safari/537.36',
    'Host':'movie.douban.com'
    }

## data needed
movie_list_english_name = []
movie_list_chinese_name = []
director_list = []
time_list = []
star_list = []
reviewNum_list = []
quote_list = []
nation_list = []
category_list = []

num = 0
for i in range(0, 10):
    link = 'https://movie.douban.com/top250?start=' 
    
    soup = BeautifulSoup(res.text, "lxml")  
    div_title_list = soup.find_all('div', class_ = 'hd') 
    div_info_list = soup.find_all('div', class_ = 'bd')
    div_star_list = soup.find_all('div', class_ = 'star')
    div_quote_list = soup.find_all('p', class_ = 'quote')
    
    for each in div_title_list:
        movie = each.a.span.text.strip() # 得到第一个字段
        movie_list_chinese_name.append(movie)
    # 通过css 定位得到第二个字段,从而得到英文名字  
    div_title_list2 = soup.select('div.hd > a > span:nth-of-type(2)')
    for each in div_title_list2:
        movie = each.text
        #movie = movie.replace(u'\xa0', u' ')
        movie = movie.strip('\xa0/\xa0') # 去掉英文名字中的空格
        movie_list_english_name.append(movie)
    
    for each in div_info_list:
        num += 1
        info = each.p.text.strip()
        if len(info) < 3: # 筛选掉不符合条件的信息
            continue
        
        # 搜索电影上映年代
        lines = info.split('\n')  # 将信息按照换行符分割成不同句子
        time_start = lines[1].find('20')
        if time_start < 0:
            time_start = lines[1].find('19')
        time_len = lines[1][time_start : time_start + 4]
        time_list.append(time_len)
        time_end = time_start + 4
        
        # 搜索电影导演中文名
        end = info.find('')
        if end < 0:
            end = info.find('...')
        director = info[4 : end - 3]
        director_list.append(director)
        
        # 搜索电影来源地
        frequent = 0
        start = 0
        end = 0
        line2 = lines[1]
        for j in range(len(line2)):
            if line2[j] == '\xa0':
                frequent += 1
            if frequent == 2 and start == 0:
                start = j + 1
            if frequent == 3:
                end = j
                break
        nation = line2[start : end]
        nation_list.append(nation)
        
        
        # 搜索电影类型
        frequent = 0
        start = 0
        for j in range(len(line2)):
            if line2[j] == '\xa0':
                frequent += 1
            if frequent == 4 and start == 0:
                start = j + 1
        category = line2[start : len(line2)]
        category_list.append(category)
    
    # 搜索电影评分
    for each in div_star_list:
        info = each.text.strip()
        star = float(info[0 : 3])
        star_list.append(star)
        end = info.find('')
        reviewNum = int(info[3 : end])
        reviewNum_list.append(reviewNum)
    
    # 搜索电影代表评论
    for each in div_quote_list:
        info = each.text.strip()
        quote_list.append(info)
    
file = xlwt.Workbook()

table = file.add_sheet('sheet1', cell_overwrite_ok = True)

table.write( 0, 0, "排名")
table.write( 0, 1, "电影中文名")
table.write( 0, 2, "电影其他名")
table.write( 0, 3, "时间")
table.write( 0, 4, "导演")
table.write( 0, 5, "国家或地区")
table.write( 0, 6, "评分")
table.write( 0, 7, "评分人数")
table.write( 0, 8, "电影类型")
table.write( 0, 9, '代表性评论')

for i in range(len(nation_list)):
    table.write(i + 1, 0, i + 1)
    table.write(i + 1, 1, movie_list_chinese_name[i])
    table.write(i + 1, 2, movie_list_english_name[i])
    table.write(i + 1, 3, time_list[i])
    table.write(i + 1, 4, director_list[i])
    table.write(i + 1, 5, nation_list[i])
    table.write(i + 1, 6, star_list[i])
    table.write(i + 1, 7, reviewNum_list[i])
    table.write(i + 1, 8, category_list[i])
    table.write(i + 1, 9, quote_list[i])

 # 导出到 xls 文件里   
file.save('豆瓣 top 10 电影爬虫抓取.xls')

# 分析电影来源地
locations = []
for i in range(len(nation_list)):
    nations = nation_list[i].split(' ') 
    for j in range(len(nations)):
        if nations[j] == '西德':
            nations[j] = '德国'
        locations.append(nations[j])

result = Counter(locations)
result_sort = sorted(result.items(), key = lambda x: x[1], reverse = True) 
result_sort = collections.OrderedDict(result_sort)
othervalue = 0
for i in range(10, len(result)):
    othervalue += list(result_sort.values())[i]
    
# 画饼状图
def make_autopct(values): # 定义饼状图中数字显示方式 
    def my_autopct(pct):
        total = sum(values)
        val = int(round(pct*total/100.0))
        return '{p:.1f}%({v:d})'.format(p = pct, v = val)
    return my_autopct
    
values = []
labels = []
for i in range(10):
    values.append(list(result_sort.values())[i])
    labels.append(list(result_sort.keys())[i])
values.append(othervalue)
labels.append('其他地区')
plt.rcParams['savefig.dpi'] = 200 # 定义图形清晰度
plt.rcParams['figure.dpi'] = 200 #set dpi for figure
w, l, p  = plt.pie(values, explode = [0.02 for i in range(11)], labels = labels, pctdistance = 0.8, 
                           radius = 1, rotatelabels = True, autopct = make_autopct(values))
[t.set_rotation(315) for t in p] # 设置标签旋转
plt.title('豆瓣 TOP10 电影来源地', y = -0.1)
plt.show()

# 分析电影类型,analysis categories
categories = []
for i in range(len(category_list)):
    category = category_list[i].split(' ') 
    for j in range(len(category)):
        categories.append(category[j])
result = Counter(categories)
result_sort = sorted(result.items(), key = lambda x: x[1], reverse = True) #排序 
result_sort = collections.OrderedDict(result_sort)
othervalue = 0
for i in range(15, len(result)):
    othervalue += list(result_sort.values())[i]
# draw the pie picture using matplotlib
values = []
labels = []
for i in range(15):
    values.append(list(result_sort.values())[i])
    labels.append(list(result_sort.keys())[i])
values.append(othervalue)
labels.append('其他类型')
plt.rcParams['savefig.dpi'] = 200 # 定义图形清晰度
plt.rcParams['figure.dpi'] = 200 
w, l, p  = plt.pie(values, explode = [0.02 for i in range(16)], labels = labels, pctdistance = 0.8, 
                           radius = 1, rotatelabels = True, autopct = make_autopct(values))
[t.set_rotation(315) for t in p] 
plt.title('豆瓣 TOP250 电影种类', y = -0.1)
plt.show()


# word cloud
jieba.add_word('久石让')
jieba.add_word('谢耳朵')
# 一些语气词和没有意义的词
del_words = ['', ' ', '', '就是', '一个', '', 
             '不是', '', '', '', '', '', '', 
             '', '', '', '', '', '', '', 
             '', '', '', '', '', '每个',  '不会', '', '没有',
             '这样', '那么', '不要', '如果', '', '', '', '', '',
             '不能', '', '一种', '', '不过', '只有', '不得不', '',
             '不得不', '', '一部', '', '', '', '', '', '']
all_quotes = ''.join(quote_list) # 将所有代表性评论拼接为一个文本
# 去掉标点符号
all_quotes = re.sub(r"[0-9\s+\.\!\/_,$%^*()?;;:-【】+\"\']+|[+——!,;:。?、~@#¥%……&*()]+", " ", all_quotes)
words = jieba.lcut(all_quotes)
words_final = []
for i in range(len(words)): # 去掉一些语气词,没有意义的词。 
    if words[i] not in del_words:
        words_final.append(words[i])
text_result = Counter(words_final)
cloud = WordCloud(
    font_path = 'FZSTK.TTF',
    background_color = 'white',
    width = 1000,
    height = 860,
    max_words = 40   
 )

wc = cloud.generate_from_frequencies(text_result)
wc.to_file("豆瓣 TOP 10 词云.jpg") 
plt.figure()
plt.imshow(wc)
plt.axis('off')
plt.title('豆瓣 TOP 10 电影代表性评论的词云分析')
plt.show()

# 评分最高的十部电影
star_dict = dict(zip(movie_list_chinese_name, star_list))
star_sort = sorted(star_dict.items(), key = lambda x: x[1], reverse = True) #排序 
star_sort = collections.OrderedDict(star_sort)
values = []
labels=[]
for i in range(10):
    labels.append(list(star_sort.keys())[i])
    values.append(list(star_sort.values())[i])
bar = plt.barh(range(10), width = values, tick_label = labels, color = 'rgbycmrgby')
for i, v in enumerate(values): # 柱状图添加数字
    plt.text(v + 0.05, i - 0.1, str(v), color = 'blue', fontweight = 'bold')
plt.xlim(xmax = 10, xmin = 8)
plt.title('评分最高的十部电影')
plt.show()

# 评分人数最多的十部电影
review_dict = dict(zip(movie_list_chinese_name, reviewNum_list))
review_sort = sorted(review_dict.items(), key = lambda x: x[1], reverse = True) #排序 
review_sort = collections.OrderedDict(review_sort)
values = []
labels=[]
for i in range(10):
    labels.append(list(review_sort.keys())[i])
    values.append(list(review_sort.values())[i])
bar = plt.barh(range(10), width = values, tick_label = labels, color = 'rgbycmrgby')
for i, v in enumerate(values): # 柱状图添加数字
    plt.text(v + 10000, i - 0.1, str(v), color = 'blue', fontweight = 'bold')
plt.xlim(xmax = 1450000, xmin = 400000)
plt.title('评分人数最多的十部电影')
plt.show()

 

四、结论(10分)
1.经过对主题数据的分析与可视化,可以得到哪些结论?

(1)豆瓣电影top10中评分多为9分以上

(2)豆瓣电影top10中电影评分相对集中

(3)豆瓣电影top10中分数最高的为9.7,最低的为9.3

(4)豆瓣电影top10中评分高的评价人数也会相对多一些


2.对本次程序设计任务完成的情况做一个简单的小结。

在写程序的过程中,发现程序能执行并不仅仅只局限在于所学习到的方法,而是能够根据人的需求不断的健壮,对爬虫的综合应用,更加了解爬虫的好处,更加有针对性的解决自己所碰到的困难,从大数据看出社会的需求。

通过本次程序设计,我知道自己还有很大的提升空间,未来会继续学习研究,不断尝试,让自己能更好的掌握这门语言。

你可能感兴趣的:(Python高级应用程序设计任务)