Autonomous driving application - Car detection - v3

2019-03-03
Summary for YOLO:
Input image (608, 608, 3)
The input image goes through a CNN, resulting in a (19,19,5,85) dimensional output.
After flattening the last two dimensions, the output is a volume of shape (19, 19, 425):
Each cell in a 19x19 grid over the input image gives 425 numbers.
425 = 5 x 85 because each cell contains predictions for 5 boxes, corresponding to 5 anchor boxes, as seen in lecture.
85 = 5 + 80 where 5 is because (pc,bx,by,bh,bw)(pc,bx,by,bh,bw) has 5 numbers, and and 80 is the number of classes we'd like to detect
You then select only few boxes based on:
Score-thresholding: throw away boxes that have detected a class with a score less than the threshold
Non-max suppression: Compute the Intersection over Union and avoid selecting overlapping boxes
This gives you YOLO's final output

holding to eliminate overlapping boxes

Because training a YOLO model from randomly initialized weights is non-trivial and requires a large dataset as well as lot of computation, we used previously trained model parameters in this exercise. If you wish, you can also try fine-tuning the YOLO model with your own dataset, though this would be a fairly non-trivial exercise.

你可能感兴趣的:(Autonomous driving application - Car detection - v3)