OKHttp源码分析

大致的使用是这样的:

OkHttpClient client = ...
OkHttpClient clientWith30sTimeout = client.newBuilder()       
.readTimeout(30, TimeUnit.SECONDS)
.build();
Response response = clientWith30sTimeout.newCall(request).execute();

OkHttpClient是产生Call的工厂类,而Call是为执行网络请求做准备的一个接口,Call可以被取消,call对象代表一个单独的request/response对。

public interface Call {
    Request request();
    Response execute() throws IOException;
    void enqueue(Callback responseCallback);
    void cancel();
    boolean isExecuted();
    boolean isCanceled();
    interface Factory {
        Call newCall(Request request);
    }
}

一,究竟一个请求/响应通路是怎么的呢?
OkHttpClient类有个SocketFactory的成员,这是产生Socket的抽象工厂类,它有5个重载的抽象方法。

public abstract SocketcreateSocket(InetAddress address, int port,    InetAddress localAddress, int localPort)
throws IOException;

其4个参数含义分别是:服务端地址,服务端端口,本机地址,本机端口。这个抽象类有个默认的实现类DefaultSocketFactory,它创建Socket方法的语句:

return new Socket(address, port, clientAddress, clientPort);

OkHttpClient在构造时做了哪些事情呢?

private OkHttpClient(Builder builder) {
  this.dispatcher = builder.dispatcher;
  this.proxy = builder.proxy;
  this.protocols = builder.protocols;
  this.connectionSpecs = builder.connectionSpecs;
  this.interceptors = Util.immutableList(builder.interceptors);  this.networkInterceptors = Util.immutableList(builder.networkInterceptors);
  this.proxySelector = builder.proxySelector;
  this.cookieJar = builder.cookieJar;
  this.cache = builder.cache;
  this.internalCache = builder.internalCache;
  this.socketFactory = builder.socketFactory;
  boolean isTLS = false;
  for (ConnectionSpec spec : connectionSpecs) {
    isTLS = isTLS || spec.isTls();
  }
  if (builder.sslSocketFactory != null || !isTLS) {
    this.sslSocketFactory = builder.sslSocketFactory;
    this.certificateChainCleaner = builder.certificateChainCleaner;
  } else {
    X509TrustManager trustManager = systemDefaultTrustManager();
    this.sslSocketFactory = systemDefaultSslSocketFactory(trustManager);
    this.certificateChainCleaner = CertificateChainCleaner.get(trustManager);
  }
  this.hostnameVerifier = builder.hostnameVerifier;
  this.certificatePinner = builder.certificatePinner.withCertificateChainCleaner(      certificateChainCleaner);
  this.proxyAuthenticator = builder.proxyAuthenticator;
  this.authenticator = builder.authenticator;
  this.connectionPool = builder.connectionPool;
  this.dns = builder.dns;
  this.followSslRedirects = builder.followSslRedirects;
  this.followRedirects = builder.followRedirects;
  this.retryOnConnectionFailure = builder.retryOnConnectionFailure;
  this.connectTimeout = builder.connectTimeout;
  this.readTimeout = builder.readTimeout;
  this.writeTimeout = builder.writeTimeout;
}

包括代理,协议,拦截器,缓存,socket,连接池,dns,超时,重试等一些请求的准备工作。这里面每一项具体如何发挥作用的,等后面分析。

当一个OkHttpClient构造好之后,调用newCall(Request request)方法产生一个Call对象,下面看一个实现了Call接口的类RealCall。

@Override
 public Response execute() throws IOException {
  synchronized (this) {
    if (executed) throw new IllegalStateException("Already Executed");
    executed = true;
  }
  try {
    client.dispatcher().executed(this);
    Response result = getResponseWithInterceptorChain(false);
    if (result == null) throw new IOException("Canceled");
    return result;
  } finally {
    client.dispatcher().finished(this);
  }
}

重点看Response是怎么得到的。

private Response getResponseWithInterceptorChain(boolean forWebSocket) throws IOException {
  Interceptor.Chain chain = new ApplicationInterceptorChain(0, originalRequest, forWebSocket);
  return chain.proceed(originalRequest);
}

Response是由ApplicationInterceptorChain来得到的。

@Override public Response proceed(Request request) throws IOException {
  // If there's another interceptor in the chain, call that.
  if (index < client.interceptors().size()) {
    Interceptor.Chain chain = new ApplicationInterceptorChain(index + 1, request, forWebSocket);
    Interceptor interceptor = client.interceptors().get(index);
    Response interceptedResponse = interceptor.intercept(chain);
    if (interceptedResponse == null) {
      throw new NullPointerException("application interceptor " + interceptor          + " returned null");
    } 
   return interceptedResponse;
  }
  // No more interceptors. Do HTTP.  return getResponse(request, forWebSocket);
}

到底所谓拦截器Interceptor和链Chain是干嘛的呢?注释说了:

Observes, modifies, and potentially short-circuits requests going out and the corresponding* responses coming back in. Typically interceptors add, remove, or transform headers on the request* or response.

大概意思就是观察/修改/短路请求发出和短路回来的响应。通常拦截器增加/移除或转化request/response的头部。

public interface Interceptor {
  Response intercept(Chain chain) throws IOException;
  interface Chain {
    Request request();
    Response proceed(Request request) throws IOException; 
   Connection connection();
  }
}

下面是ApplicationInterceptorChain对Interceptor.Chain的proceed(Request r)方法的具体实现:

@Override public Response proceed(Request request) throws IOException {
  // If there's another interceptor in the chain, call that.
  if (index < client.interceptors().size()) {
    Interceptor.Chain chain = new ApplicationInterceptorChain(index + 1, request, forWebSocket);
    Interceptor interceptor = client.interceptors().get(index);
    Response interceptedResponse = interceptor.intercept(chain);
    if (interceptedResponse == null) {
      throw new NullPointerException("application interceptor " + interceptor          + " returned null");
    }    return interceptedResponse;
  }
  // No more interceptors. Do HTTP.
  return getResponse(request, forWebSocket);
}

拦截器起什么作用,这里要搞清楚,似乎很重要。
关键点在最后一句,这里返回了Response。

Response getResponse(Request request, boolean forWebSocket) throws IOException {
  // Copy body metadata to the appropriate request headers.
  RequestBody body = request.body();
  if (body != null) {
    Request.Builder requestBuilder = request.newBuilder();
    MediaType contentType = body.contentType();
    if (contentType != null) {
      requestBuilder.header("Content-Type", contentType.toString());
    }    long contentLength = body.contentLength();
    if (contentLength != -1) {
      requestBuilder.header("Content-Length",
 Long.toString(contentLength));
      requestBuilder.removeHeader("Transfer-Encoding");
    } else {
      requestBuilder.header("Transfer-Encoding", "chunked");
      requestBuilder.removeHeader("Content-Length");
    }    
request = requestBuilder.build();
  }
  // Create the initial HTTP engine. Retries and redirects need new engine for each attempt.
  engine = new HttpEngine(client, request, false, false, forWebSocket, null, null, null);
  int followUpCount = 0;  while (true) { 
   if (canceled) {
      engine.releaseStreamAllocation();
      throw new IOException("Canceled");
    }
    boolean releaseConnection = true;
    try {
      engine.sendRequest();
      engine.readResponse();
      releaseConnection = false;
    } catch (RequestException e) {
      // The attempt to interpret the request failed. Give up.
      throw e.getCause();
    } catch (RouteException e) {
      // The attempt to connect via a route failed. The request will not have been sent.
      HttpEngine retryEngine = engine.recover(e.getLastConnectException(), true, null);
      if (retryEngine != null) {
        releaseConnection = false;
        engine = retryEngine;
        continue;
      }
      // Give up; recovery is not possible.
      throw e.getLastConnectException();
    } catch (IOException e) {
      // An attempt to communicate with a server failed. The request may have been sent.
      HttpEngine retryEngine = engine.recover(e, false, null);
      if (retryEngine != null) {
        releaseConnection = false;
        engine = retryEngine;
        continue;
      }
      // Give up; recovery is not possible.
      throw e;
    } finally {
      // We're throwing an unchecked exception. Release any resources.
      if (releaseConnection) {
        StreamAllocation streamAllocation = engine.close();
        streamAllocation.release();
      }
    } 
    Response response = engine.getResponse();
    Request followUp = engine.followUpRequest();
    if (followUp == null) {
      if (!forWebSocket) {
        engine.releaseStreamAllocation();
      }
      return response;
    }
    StreamAllocation streamAllocation = engine.close();
    if (++followUpCount > MAX_FOLLOW_UPS) {
      streamAllocation.release();
      throw new ProtocolException("Too many follow-up requests: " + followUpCount);
    }
    if (!engine.sameConnection(followUp.url())) {
      streamAllocation.release();
      streamAllocation = null;
    }
 else if (streamAllocation.stream() != null) {
      throw new IllegalStateException("Closing the body of " + response          + " didn't close its backing stream. Bad interceptor?");
    }
    request = followUp;
    engine = new HttpEngine(client, request, false, false, forWebSocket, streamAllocation, null,        response);
  }
}

发现HTTP请求/响应发生的核心,是HttpEngine这个类。

engine.sendRequest();
engine.readResponse();

大概是这两个方法调用之后,就可以从engine中取出Response了。

Response response = engine.getResponse();

那么在HttpEngine调sendRequest()方法时,发生了什么事呢?
我把这个方法的注释摘抄一下:

Figures out what the response source will be, and opens a socket to that source if necessary. Prepares the request headers and gets ready to start writing the request body if it exists.

大意:指明response源是什么样子,打开一个socket连接到那个response源上,准备请求头并做好开始写请求体的准备。

然后看一下readResponse()这个方法做了什么事情。

Flushes the remaining request header and body, parses the HTTP response headers and starts reading the HTTP response body if it exists.

大意是将剩余的请求头和请求头清除出来,然后解析HTTP响应头,开始读取HTTP响应体。

未完,待续。

下午要出去面试了。不知道又会是个什么鬼样。

你可能感兴趣的:(OKHttp源码分析)