- 知识蒸馏:让大模型“瘦身“而不失智慧的魔术
一休哥助手
人工智能人工智能
引言:当AI模型需要"减肥"在人工智能领域,一个有趣的悖论正在上演:大模型的参数规模每年以10倍速度增长,而移动设备的算力却始终受限。GPT-4的1750亿参数需要价值500万美元的GPU集群运行,但现实中的智能设备可能只有指甲盖大小。这种矛盾催生了一项神奇的技术——知识蒸馏(KnowledgeDistillation),它就像给AI模型进行"脑外科手术",将庞然大物的智慧浓缩到轻量模型中。第一章
- golang-嵌套结构体
lmryBC49
golang开发语言后端
结构体嵌套golang中没有类,他通过结构体来实现其他编程语言中类的相关功能。具名结构体基本语法基本语法golang的结构体嵌套特别简单。type结构体类型1struct{字段类型1字段类型2}//这样就实现了结构体的嵌套type结构体类型2struct{字段类型1字段类型2字段结构体类型1}举例packagestruct_knowledgeimport"fmt"typeWorkerstruct{
- golang-方法
lmryBC49
golang开发语言后端
方法概述方法是给类型增加的,通过类型实例.方法名()调用。例如我们用自定义类型保存了整数,我们想给该类型的变量都增加一个方法可以直接判断该数是不是奇数。packagemethod_knowledgeimport"fmt"//案例1:给Myint自定义类型添加奇数判断方法typeMyintintfunc(aMyint)IsOdd(){if(a%2==0){fmt.Println("a不是奇数")}e
- 阅读理解英语
小崔的技术博客
读书成长笔记其他
Wesearchforloveandtrytogetlove,andyetitseemslikewenevergetenough.Evenwhenwehavefoundlove,itcanslipawayastimepasses.Loveisthespacious,openattentionofourawareness.Thekeytoexperiencingloveistonoticewhere
- 【人工智能】注意力机制深入理解
问道飞鱼
机器学习与人工智能人工智能注意力机制
文章目录**一、注意力机制的核心思想****二、传统序列模型的局限性****三、Transformer与自注意力机制****1.自注意力机制的数学公式****四、注意力机制的关键改进****1.稀疏注意力(SparseAttention)****2.相对位置编码(RelativePositionEncoding)****3.图注意力网络(GraphAttentionNetwork,GAN)****
- Transformer与图神经网络的融合与应用
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Transformer与图神经网络的融合与应用关键词:Transformer,图神经网络,注意力机制,图结构数据,图表示学习,图分类,图生成1.背景介绍近年来,深度学习技术在各个领域取得了显著的进展。其中,Transformer模型和图神经网络(GraphNeuralNetworks,GNNs)是两个备受关注的研究方向。Transformer最初应用于自然语言处理领域,通过自注意力机制实现了并行计
- 深度学习的颠覆性发展:从卷积神经网络到Transformer
AI天才研究院
AI大模型应用入门实战与进阶ChatGPT大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍深度学习是人工智能的核心技术之一,它通过模拟人类大脑中的神经网络学习从大数据中抽取知识,从而实现智能化的自动化处理。深度学习的发展历程可以分为以下几个阶段:2006年,GeoffreyHinton等人开始研究卷积神经网络(ConvolutionalNeuralNetworks,CNN),这是深度学习的第一个大突破。CNN主要应用于图像处理和语音识别等领域。2012年,AlexKrizh
- 【无标题】
gs80140
AI人工智能
KVCache在自回归生成中的作用及显存优化1.什么是KVCache?在大语言模型(LLM)进行自回归(autoregressive)文本生成时,每次生成新token,都需要基于过去的上下文重新计算self-attention机制中的Key(K)和值(V)。KVCache(键值缓存)是一种优化策略,它缓存先前计算的K/V张量,避免重复计算,从而提高生成速度并降低计算成本。2.KVCache在自回归
- C1-Week2 Program Assignment: Logistic Regression with a Neural Network mindset
houzhizhen
LogisticRegressionwithaNeuralNetworkmindsetWelcometoyourfirst(required)programmingassignment!Youwillbuildalogisticregressionclassifiertorecognizecats.ThisassignmentwillstepyouthroughhowtodothiswithaNe
- 知识管理系统:构建企业智慧大脑
AI天才研究院
ChatGPTAI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
第一部分:知识管理概述与重要性第1章:知识管理的定义与基本概念1.1.1知识管理的起源与发展知识管理(KnowledgeManagement,KM)起源于20世纪80年代,当时企业在市场竞争中逐渐意识到知识作为一种战略资源的重要性。早期的知识管理实践主要集中在知识的收集、存储和传播上。随着信息技术的发展,知识管理逐渐融入了更先进的技术手段,如数据挖掘、人工智能和大数据分析,使其成为一个跨学科、多领
- Multi-view graph convolutional networks with attention mechanism
小源er
图论和图神经网络机器学习机器学习深度学习人工智能
摘要传统的图卷积网络关注于如何高效的探索不同阶跳数(hops)的邻居节点的信息。但是目前的基于GCN的图网络模型都是构建在固定邻接矩阵上的即实际图的一个拓扑视角。当数据包含噪声或者图不完备时,这种方式会限制模型的表达能力。由于数据的测量或者收集会不可避免的会出现错误,因此基于固定结构的图模型表达能力是不充分的。本文提出了基于注意力机制的多视图图卷积网络,将拓扑结构的多个视图和基于注意力的特征聚合策
- MyBatisPlus 代码生成器如何使用?一篇文章学会它!!!
程序猿ZhangSir
Java数据库#MyBatisjavaspring数据库
目录一.MP代码生成器简介二.准备工作2.1建立数据库和表2.1创建项目三.编写工具类3.1创建类3.2定义数据库连接变量3.3定义单表代码生成函数3.4扩展为任意表自动生成代码四.测试代码生成器4.1测试单表生成model方法一.MP代码生成器简介代码生成器是MyBatis-Plus提供的一个非常实用的功能,可以快速生成Entity、Mapper、MapperXML、Service、Contro
- Transformer精选问答
EmbodiedTech
大模型人工智能transformer深度学习人工智能
Transformer精选问答1Transformer各自模块作用Encoder模块经典的Transformer架构中的Encoder模块包含6个EncoderBlock.每个EncoderBlock包含两个子模块,分别是多头自注意力层,和前馈全连接层.多头自注意力层采用的是一种ScaledDot-ProductAttention的计算方式,实验结果表明,Multi-head可以在更细致的层面上提
- 【Image captioning-RS】论文12 Prior Knowledge-Guided Transformer for Remote Sensing Image Captioning
CV视界
Imagecaptioning学习transformer深度学习人工智能
1.摘要遥感图像(RSI)字幕生成旨在为遥感图像生成有意义且语法正确的句子描述。然而,相比于自然图像字幕,RSI字幕生成面临着由于RSI特性而产生的额外挑战。第一个挑战源于这些图像中存在大量物体。随着物体数量的增加,确定描述的主要焦点变得越来越困难。此外,RSI中的物体通常外观相似,进一步复杂化了准确描述的生成。为克服这些挑战,我们提出了一种基于先验知识的transformer(PKG-Trans
- 深度学习五大模型:CNN、Transformer、BERT、RNN、GAN详细解析
深度学习
卷积神经网络(ConvolutionalNeuralNetwork,CNN)原理:CNN主要由卷积层、池化层和全连接层组成。卷积层通过卷积核在输入数据上进行卷积运算,提取局部特征;池化层则对特征图进行下采样,降低特征维度,同时保留主要特征;全连接层将特征图展开为一维向量,并进行分类或回归计算。CNN利用卷积操作实现局部连接和权重共享,能够自动学习数据中的空间特征。适用场景:广泛应用于图像处理相关的
- Oracle转化为MySQL数据库
袅沫
点兵之经数据库mysql
使用HttpClient调用Post方法的时候,EntityUtils.toString(response.getEntity());响应数据只能读取一次,读取多次会出现,Attemptedreadfromclosedstream错误。Oracle转化为MySQL数据库OracleMySQLORDERBYCREATED_TIMEDESCNULLSLASTORDERBYCREATED_TIMEDES
- 谈谈 TypeScript 中的联合类型(union types)和交叉类型(intersection types),它们的应用场景是什么?
程序员黄同学
TypeScriptJavaScript前端开发typescriptjavascript前端
一、联合类型(UnionTypes)核心概念使用管道符|表示多选一关系,典型场景:处理可能存在多种类型的变量//基础示例:处理数值型ID(number)或哈希型ID(string)typeEntityID=number|string;functiongetEntity(id:EntityID){//类型守卫处理分支逻辑if(typeofid==='number'){console.log(`Fet
- JPA 实战经验
jpajava
这个博客会持续更新...JSON数据无法进行更新背景:数据库字段是json格式,代码Entity中字段使用了@Converter进行类型转换,对象本身是个List,产生的效果是查询生效,插入生效,更新不生效。怀疑方向:List对象实例ID发生变更了导致未识别@Converter转换器类型有问题尝试以上操作之后,问题依旧。最后,发现自己搞错概念了,把字段与关联表概念搞混了,它本质是一个字段,JPA对
- NLP高频面试题(四)——BN和LN的区别与联系,为什么attention要用LN
Chaos_Wang_
NLP常见面试题自然语言处理人工智能
在深度学习模型中,Normalization是一种极为重要的技巧,BatchNormalization(BN)和LayerNormalization(LN)是其中最为常用的两种方法。然而,二者在实际应用中有着明显的区别与联系,尤其在Transformer的Attention机制中,LN有着独特的优势。一、BN与LN的核心区别与联系1.BatchNormalization(BN)BN的思想源于一个叫
- 如何计算一个7B的模型训练需要的参数量以及训练时需要的计算资源
yxx122345
算法
计算理论过程见:transformer中多头注意力机制的参数量是多少?1.模型参数量的计算7B参数模型的总参数量是70亿(7billion)。这些参数主要分布在以下几个部分:Transformer层:多头注意力机制(Multi-HeadAttention)前馈神经网络(Feed-ForwardNetwork)嵌入层(EmbeddingLayer):词嵌入(TokenEmbeddings)位置编码(
- 注意力机制:GPT等大模型的基石
人工智能
1啥是注意力?人类观察事物,能快速判断一种事物,是因为大脑能很快把注意力放在事物最具辨识度的部分从而作出判断,而非从头到尾一览无遗观察一遍才能有判断。基于这样的观察实践,产生了注意力机制(AttentionMechanism)。想象你在人群中找一个穿红衣服的人。你不会一一检查每个人的鞋子、裤子、头发,而是直接把目光锁定在衣服颜色,因为那是“最有辨识度的特征”。大脑就是这么高效工作的。注意力机制是模
- 【保姆级视频教程(一)】YOLOv12环境配置:从零到一,手把手保姆级教程!| 小白也能轻松玩转目标检测!
一只云卷云舒
YOLOv12保姆级通关教程YOLOYOLOv12flashattentionGPU计算能力算力
【2025全站首发】YOLOv12环境配置:从零到一,手把手保姆级教程!|小白也能轻松玩转目标检测!文章目录1.FlashAttentionWindows端WHL包下载1.1简介1.2下载链接1.3国内镜像站1.4安装方法2.NVIDIAGPU计算能力概述2.1简介2.2计算能力版本与GPU型号对照表2.2.1CUDA-EnabledDatacenterProducts2.2.2CUDA-Enab
- 基于 easyExcel 3.1.5依赖的包 实现动态表头 动态表格内容
善我
javajava服务器前端
1.需求:需要导出的EXCEL示例:2.依赖:com.alibabaeasyexcel3.1.53.工具类:packagecom.minex.web.device.utils;importcom.minex.web.device.entity.vo.ReadRecordsVO;importlombok.extern.slf4j.Slf4j;importorg.apache.poi.ss.userm
- 注意力机制+多尺度卷积
一只小小的土拨鼠
解构前沿:文献精读深度学习python人工智能YOLO深度学习
多尺度卷积先提供丰富的特征信息,注意力机制再从中筛选出关键信息,这样结合起来,不仅可以进一步提高模型的识别精度和效率,显著提升模型性能,还可以增强模型的可解释性。MPARN:multi-scalepathattentionresidualnetworkforfaultdiagnosisofrotatingmachines方法:论文介绍了一种用于旋转机械故障诊断的多尺度卷积神经网络结构,称为多尺度路
- python 如何引入同一个文件夹下py方法
m0_68335176
eclipse
前言毕业快三年了,前后也待过几家公司,碰到各种各样的同事。见识过各种各样的代码,优秀的、垃圾的、不堪入目的、看了想跑路的等等,所以这篇文章记录一下一个优秀的后端Java开发应该有哪些好的开发习惯。拆分合理的目录结构受传统的MVC模式影响,传统做法大多是几个固定的文件夹controller、service、mapper、entity,然后无限制添加,到最后你就会发现一个service文件夹下面有几十
- 深入解析Quantum-GABP:量子神经网络的实现与应用
m0_57781768
神经网络量子计算人工智能
深入解析Quantum-GABP:量子神经网络的实现与应用引言在现代科技飞速发展的今天,量子计算与神经网络的结合成为了研究热点。量子神经网络(QuantumNeuralNetworks,QNN)凭借其巨大的计算潜力和独特的量子特性,逐渐吸引了研究者的关注。其中,Quantum-GABP(量子广义反向传播算法)作为一种高效的量子神经网络训练算法,展现出极大的应用前景。本文将深入探讨Quantum-G
- 量子神经网络(Quantum Neural Network):结合量子计算的 AI 新探索
盼达思文体科创
人工智能和深度学习量子计算人工智能神经网络
一、引言在当今科技飞速发展的时代,人工智能(AI)和量子计算成为了两个备受关注的领域。量子神经网络(QuantumNeuralNetwork,QNN)作为这两个领域的交叉点,正吸引着越来越多的研究兴趣。QNN试图将量子计算的强大能力与传统神经网络的学习能力相结合,为解决复杂的人工智能问题提供新的思路和方法。二、量子计算基础(一)量子比特(Qubit)量子比特是量子计算的基本信息单位,与传统的比特不
- 知识蒸馏 vs RLHF:目标函数与收敛分析
从零开始学习人工智能
人工智能
1.知识蒸馏(KnowledgeDistillation)知识蒸馏是一种模型压缩技术,旨在将大型复杂模型(教师模型)的知识迁移到较小的模型(学生模型)中,以提高学生模型的性能。目标函数知识蒸馏的目标函数通常由两部分组成:分类损失(StudentLoss):学生模型的输出与真实标签之间的交叉熵损失,表示为:[Lclassification=CrossEntropy(y,q(1))=−∑i=1Nyil
- 深度学习中的注意力机制:解锁智能模型的新视角
冰蓝蓝
深度学习深度学习人工智能
在人工智能的快速发展中,深度学习模型已经成为了处理复杂数据和任务的主力军。然而,随着数据量的激增和任务的复杂化,传统的深度学习模型面临着效率和性能的双重挑战。在这样的背景下,注意力机制(AttentionMechanism)应运而生,它不仅提升了模型的处理能力,还为深度学习领域带来了新的研究视角。什么是注意力机制?注意力机制是一种受人类视觉注意力启发的技术,它允许模型在处理大量信息时,能够动态地聚
- 网络神经架构的概念及其实际应用
2301_81121233
网络爬山算法近邻算法霍夫曼树剪枝哈希算法柔性数组
###网络神经架构的概念**网络神经架构(NeuralNetworkArchitecture)**是指用于构建和组织人工神经网络(ArtificialNeuralNetworks,ANN)的结构和方法。这些架构通常由多个层次的节点(神经元)组成,通过模拟人脑神经元之间的连接和信息传递方式,来处理复杂的数据输入并生成相应的输出。网络神经架构通常由以下几个部分组成:1.**输入层(InputLayer
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后