hadoop 集群+kylin

说明:不少读者反馈,想使用开源组件搭建Hadoop平台,然后再部署Kylin,但是遇到各种问题。这里我为读者部署一套环境,请朋友们参考一下。如果还有问题,再交流。

系统环境以及各组件版本信息

Linux操作系统:

cat /etc/redhat-release

CentOS Linux release 7.2.1511 (Core)

JDK版本:

java -version

java version "1.8.0_111"

Java(TM) SE Runtime Environment (build1.8.0_111-b14)

Java HotSpot(TM) 64-Bit Server VM (build25.111-b14, mixed mode)

Hadoop组件版本:

Hive:apache-hive-1.2.1-bin

Hadoop:hadoop-2.7.2

HBase:hbase-1.1.9-bin

Zookeeper:zookeeper-3.4.6

Kylin版本:

apache-kylin-1.5.4.1-hbase1.x-bin

三个节点情况以及安装的组件(仅测试):

192.168.1.129 ldvl-kyli-a01 ldvl-kyli-a01.idc.dream.com

192.168.1.130 ldvl-kyli-a02 ldvl-kyli-a02.idc.dream.com

192.168.1.131 ldvl-kyli-a03 ldvl-kyli-a03.idc.dream.com

基础组件部署

  1.  JDK环境搭建(3个节点)
    

rpm包安装:

rpm -ivh jdk-8u111-linux-x64.rpm

配置环境变量:

vi /etc/profile

export JAVA_HOME=/usr/java/default

export JRE_HOME=/usr/java/default/jre

exportCLASSPATH=.:$JAVA_HOME/lib:$JRE_HOME/lib:$CLASSPATH

exportPATH=$JAVA_HOME/bin:$JRE_HOME/bin:$PATH

source /etc/profile

验证:

java -version

java version "1.8.0_111"

Java(TM) SE Runtime Environment (build1.8.0_111-b14)

Java HotSpot(TM) 64-Bit Server VM (build25.111-b14, mixed mode)

  1.  Zookeeper环境搭建(3个节点)
    

安装:

tar -zxvf zookeeper-3.4.6.tar.gz -C /usr/local/

cd /usr/local/

ln -s zookeeper-3.4.6 zookeeper

创建数据和日志目录

mkdir /usr/local/zookeeper/zkdata

mkdir /usr/local/zookeeper/zkdatalog

配置Zookeeper参数

cd /usr/local/zookeeper/conf

cp zoo_sample.cfg zoo.cfg

修改好的配置文件如下:

tickTime=2000

initLimit=10

syncLimit=5

dataDir=/usr/local/zookeeper/zkdata

dataLogDir=/usr/local/zookeeper/zkdatalog

clientPort=2181

server.1=ldvl-kyli-a01:2888:3888

server.2=ldvl-kyli-a02:2888:3888

server.3=ldvl-kyli-a03:2888:3888

创建myid

cd /usr/local/zookeeper/zkdata

echo 1 > myid #每个节点根据上面的配置(server.x)创建对应的文件内容

启动Zookeeper:

zkServer.sh start

查看状态:

192.168.1.129节点:

zkServer.sh status

JMX enabled by default

Using config:/usr/local/zookeeper/bin/../conf/zoo.cfg

Mode: follower

192.168.1.130节点:

zkServer.sh status

JMX enabled by default

Using config:/usr/local/zookeeper/bin/../conf/zoo.cfg

Mode: leader

192.168.1.131节点:

zkServer.sh status

JMX enabled by default

Using config:/usr/local/zookeeper/bin/../conf/zoo.cfg

Mode: follower

  1.  MariaDB数据库
    

安装:

yum install MariaDB-server MariaDB-client

启动:

systemctl start mariadb

设置root密码,安全加固等:

mysql_secure_installation

  1.  关闭防火墙
    

systemctl disable firewalld

systemctl stop firewalld

同时,也需要关闭SELinux,可修改 /etc/selinux/config 文件,将其中的 SELINUX=enforcing 改为 SELINUX=disabled即可。

  1.  三个节点保证时间同步
    

可以通过ntp服务进行设置

Hadoop组件部署

  1.  Hadoop
    

创建组和用户:

groupadd hadoop

useradd -s /bin/bash -d /app/hadoop -m hadoop-g hadoop

passwd hadoop

下面所有的操作都是在hadoop用户下面操作

切换到hadoop用户下面创建信任关系:

ssh-keygen -t rsa

ssh-copy-id -p 22 [email protected]

ssh-copy-id -p 22 [email protected]

ssh-copy-id -p 22 [email protected]

解压缩:

$ tar -zxvf hadoop-2.7.2.tar.gz

设置软链接:

$ ln -s hadoop-2.7.2 hadoop

配置:

$ cd /app/hadoop/hadoop/etc/hadoop

l core-site.xml

   fs.defaultFS

   hdfs://ldvl-kyli-a01:9000

   hadoop.tmp.dir

   file:/app/hadoop/hadoop/tmp

   io.file.buffer.size

   131702

l hdfs-site.xml

   dfs.namenode.name.dir

   file:/app/hadoop/hdfs/name

   dfs.datanode.data.dir

   file:/app/hadoop/hdfs/data

   dfs.replication

   3

  dfs.http.address 

  ldvl-kyli-a01:50070 

   dfs.namenode.secondary.http-address

   ldvl-kyli-a01:50090

   dfs.webhdfs.enabled

   true

   dfs.permissions

   false

   dfs.blocksize

   268435456

   HDFS blocksize of 256MB for largefile-systems.

  dfs.datanode.max.xcievers

  4096

l yarn-site.xml

yarn.resourcemanager.address

ldvl-kyli-a01:8032

yarn.resourcemanager.scheduler.address

ldvl-kyli-a01:8030

yarn.resourcemanager.resource-tracker.address

ldvl-kyli-a01:8031

yarn.resourcemanager.admin.address

ldvl-kyli-a01:8033

yarn.resourcemanager.webapp.address

ldvl-kyli-a01:8088

yarn.nodemanager.aux-services

mapreduce_shuffle

Configuration to enable or disable logaggregation.Shuffle service that needs to be set for Map Reduceapplications.

yarn.nodemanager.aux-services.mapreduce_shuffle.class

org.apache.hadoop.mapred.ShuffleHandler

l mapred-site.xml

   mapreduce.framework.name

   yarn

   mapreduce.jobhistory.address

   ldvl-kyli-a01:10020

   mapreduce.jobhistory.webapp.address

   ldvl-kyli-a01:19888

l slaves

ldvl-kyli-a01

ldvl-kyli-a02

ldvl-kyli-a03

l hadoop-env.sh,mapred-env.sh和yarn-env.sh

export JAVA_HOME=/usr/java/default

环境变量配置(这里我将所有的组件的环境变量都配置好了,后面每个组件我就不再说明):

$ cat .bashrc

export JAVA_HOME=/usr/java/default

export JRE_HOME=/usr/java/default/jre

exportCLASSPATH=.:$JAVA_HOME/lib:$JRE_HOME/lib:$CLASSPATH

export PATH=$JAVA_HOME/bin:$JRE_HOME/bin:$PATH

export HIVE_HOME=/app/hadoop/hive

export HADOOP_HOME=/app/hadoop/hadoop

export HBASE_HOME=/app/hadoop/hbase

added by HCAT

export HCAT_HOME=/app/hadoop/hive/hcatalog

added by Kylin

export KYLIN_HOME=/app/hadoop/kylin

export KYLIN_CONF=/app/hadoop/kylin/conf

exportPATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$HIVE_HOME/bin:$HBASE_HOME/bin:${KYLIN_HOME}/bin:$PATH

创建HDFS的数据目录

$ mkdir -p /app/hadoop/hdfs/data

$ mkdir -p /app/hadoop/hdfs/name

$ mkdir -p /app/hadoop/tmp

加入上面的hadoop所有配置都配置完成了,你也可以全部拷贝到其他节点。

HDFS格式化:

$ hdfs namenode -format

$ start-dfs.sh

$ start-yarn.sh

$ mr-jobhistory-daemon.sh starthistoryserver

然后进行验证操作,比如同通过jps查看进程,通过web页面服务hdfs和yarn,执行wordcount的测试程序等等

Hive组件部署

安装:

$ tar -zxvf apache-hive-1.2.1-bin.tar.gz

$ ln -s apache-hive-1.2.1-bin hive

配置:

$ cd /app/hadoop/hive/conf

l hive-env.sh

export HIVE_HOME=/app/hadoop/hive

HADOOP_HOME=/app/hadoop/hadoop

export HIVE_CONF_DIR=/app/hadoop/hive/conf

l hive-site.xml

hive.metastore.warehouse.dir

hdfs://ldvl-kyli-a01:9000/user/hive/warehouse

hive.exec.scratchdir

hdfs://ldvl-kyli-a01:9000/user/hive/scratchdir

javax.jdo.option.ConnectionURL

jdbc:mysql://ldvl-kyli-a01:3306/metastore?createDatabaseIfNotExist=true

javax.jdo.option.ConnectionDriverName

com.mysql.jdbc.Driver

javax.jdo.option.ConnectionUserName

hive

javax.jdo.option.ConnectionPassword

123456

hive.metastore.local

true

hive.metastore.uris

thrift://ldvl-kyli-a01:9083

l hive-log4j.properties

hive.log.dir=/app/hadoop/hive/log

hive.log.file=hive.log

将mysql-connector-java-5.1.38-bin.jar放到Hive的lib目录下面:

$ cp mysql-connector-java-5.1.38-bin.jar/app/hadoop/hive/lib/

创建Hive元数据库:

MariaDB [(none)]> create database metastore character set latin1;

grant all on metastore.* to hive@"%" identified by "123456" with grant option;

flush privileges;

启动服务:

nohup hive --service metastore -v &

$ tailf nohup.out

Starting Hive Metastore Server

17/03/16 14:10:29 WARN conf.HiveConf:HiveConf of name hive.metastore.local does not exist

Starting hive metastore on port 9083

HBase组件部署

安装:

$ tar -zxvf hbase-1.1.9-bin.tar.gz

$ ln -s hbase-1.1.9 hbase

配置:

l hbase-site.xml

   hbase.rootdir

   hdfs://ldvl-kyli-a01:9000/hbaseforkylin

   hbase.cluster.distributed

   true

   hbase.master.port

   16000


   hbase.master.info.port

   16010

   hbase.zookeeper.quorum

   ldvl-kyli-a01,ldvl-kyli-a02,ldvl-kyli-a03

   hbase.zookeeper.property.clientPort

   2181

   hbase.zookeeper.property.dataDir

   /usr/local/zookeeper/zkdata

l regionservers

ldvl-kyli-a02

ldvl-kyli-a03

l hbase-env.sh

export JAVA_HOME=/usr/java/latest

export HBASE_OPTS="-Xmx268435456-XX:+HeapDumpOnOutOfMemoryError -XX:+UseConcMarkSweepGC -XX:+CMSIncrementalMode-Djava.net.preferIPv4Stack=true $HBASE_OPTS"

exportHBASE_MASTER_OPTS="$HBASE_MASTER_OPTS -XX:PermSize=128m-XX:MaxPermSize=128m"

exportHBASE_REGIONSERVER_OPTS="$HBASE_REGIONSERVER_OPTS -XX:PermSize=128m-XX:MaxPermSize=128m"

export HBASE_LOG_DIR=${HBASE_HOME}/logs

export HBASE_PID_DIR=${HBASE_HOME}/logs

export HBASE_MANAGES_ZK=false

如果日志目录不存在,需要提前创建好。

启动HBase服务:

$ start-hbase.sh

Kylin环境部署(我只选第一个节点安装,仅测试)

安装:

$ tar -zxvf apache-kylin-1.5.4.1-hbase1.x-bin.tar.gz

$ ln -s apache-kylin-1.5.4.1-hbase1.x-bin kylin

配置:

$ cd kylin/conf/

l kylin.properties # 基本默认值

kyin.server.mode=all

kylin.rest.servers=192.168.1.129:7070

kylin.rest.timezone=GMT+8

kylin.hive.client=cli

kylin.hive.keep.flat.table=false

kylin.metadata.url=kylin_metadata@hbase

kylin.storage.url=hbase

kylin.storage.cleanup.time.threshold=172800000

kylin.hdfs.working.dir=/kylin

kylin.hbase.default.compression.codec=none

kylin.hbase.region.cut=5

kylin.hbase.hfile.size.gb=2

kylin.hbase.region.count.min=1

kylin.hbase.region.count.max=50

环境变量配置:

$ cat .bashrc

export JAVA_HOME=/usr/java/default

export JRE_HOME=/usr/java/default/jre

exportCLASSPATH=.:$JAVA_HOME/lib:$JRE_HOME/lib:$CLASSPATH

exportPATH=$JAVA_HOME/bin:$JRE_HOME/bin:$PATH

export HIVE_HOME=/app/hadoop/hive

export HADOOP_HOME=/app/hadoop/hadoop

export HBASE_HOME=/app/hadoop/hbase

added by HCAT

export HCAT_HOME=/app/hadoop/hive/hcatalog

added by Kylin

export KYLIN_HOME=/app/hadoop/kylin

export KYLIN_CONF=/app/hadoop/kylin/conf

exportPATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$HIVE_HOME/bin:$HBASE_HOME/bin:${KYLIN_HOME}/bin:$PATH

检查Kylin用来的环境变量:

$ ${KYLIN_HOME}/bin/check-env.sh

KYLIN_HOME is set to /app/hadoop/kylin

$ kylin/bin/find-hbase-dependency.sh

hbase dependency: /app/hadoop/hbase/lib/hbase-common-1.1.9.jar

$ kylin/bin/find-hive-dependency.sh

Logging initialized using configuration infile:/app/hadoop/apache-hive-1.2.1-bin/conf/hive-log4j.properties

HCAT_HOME is set to:/app/hadoop/hive/hcatalog, use it to find hcatalog path:

hive dependency:/app/hadoop/hive/conf:/app/hadoop/hive/lib/jcommander-1.32.jar:/app/hadoop/hive/lib/stringtemplate-3.2.1.jar:/app/hadoop/hive/lib/hive-shims-0.23-1.2.1.jar:/app/hadoop/hive/lib/hive-jdbc-1.2.1-standalone.jar:/app/hadoop/hive/lib/hamcrest-core-1.1.jar:/app/hadoop/hive/lib/commons-compress-1.4.1.jar:/app/hadoop/hive/lib/xz-1.0.jar:/app/hadoop/hive/lib/hive-common-1.2.1.jar:/app/hadoop/hive/lib/guava-14.0.1.jar:/app/hadoop/hive/lib/commons-collections-3.2.1.jar:/app/hadoop/hive/lib/jta-1.1.jar:/app/hadoop/hive/lib/antlr-2.7.7.jar:/app/hadoop/hive/lib/maven-scm-provider-svn-commons-1.4.jar:/app/hadoop/hive/lib/hive-metastore-1.2.1.jar:/app/hadoop/hive/lib/hive-jdbc-1.2.1.jar:/app/hadoop/hive/lib/commons-httpclient-3.0.1.jar:/app/hadoop/hive/lib/ivy-2.4.0.jar:/app/hadoop/hive/lib/geronimo-annotation_1.0_spec-1.1.1.jar:/app/hadoop/hive/lib/commons-pool-1.5.4.jar:/app/hadoop/hive/lib/maven-scm-api-1.4.jar:/app/hadoop/hive/lib/mysql-connector-java-5.1.38-bin.jar:/app/hadoop/hive/lib/commons-configuration-1.6.jar:/app/hadoop/hive/lib/accumulo-start-1.6.0.jar:/app/hadoop/hive/lib/asm-commons-3.1.jar:/app/hadoop/hive/lib/libfb303-0.9.2.jar:/app/hadoop/hive/lib/commons-dbcp-1.4.jar:/app/hadoop/hive/lib/log4j-1.2.16.jar:/app/hadoop/hive/lib/hive-shims-common-1.2.1.jar:/app/hadoop/hive/lib/junit-4.11.jar:/app/hadoop/hive/lib/antlr-runtime-3.4.jar:/app/hadoop/hive/lib/commons-cli-1.2.jar:/app/hadoop/hive/lib/commons-logging-1.1.3.jar:/app/hadoop/hive/lib/ant-1.9.1.jar:/app/hadoop/hive/lib/hive-contrib-1.2.1.jar:/app/hadoop/hive/lib/httpcore-4.4.jar:/app/hadoop/hive/lib/datanucleus-api-jdo-3.2.6.jar:/app/hadoop/hive/lib/commons-beanutils-1.7.0.jar:/app/hadoop/hive/lib/curator-recipes-2.6.0.jar:/app/hadoop/hive/lib/netty-3.7.0.Final.jar:/app/hadoop/hive/lib/accumulo-trace-1.6.0.jar:/app/hadoop/hive/lib/jetty-all-server-7.6.0.v20120127.jar:/app/hadoop/hive/lib/servlet-api-2.5.jar:/app/hadoop/hive/lib/curator-client-2.6.0.jar:/app/hadoop/hive/lib/hive-shims-scheduler-1.2.1.jar:/app/hadoop/hive/lib/commons-lang-2.6.jar:/app/hadoop/hive/lib/geronimo-jaspic_1.0_spec-1.0.jar:/app/hadoop/hive/lib/curator-framework-2.6.0.jar:/app/hadoop/hive/lib/asm-tree-3.1.jar:/app/hadoop/hive/lib/hive-beeline-1.2.1.jar:/app/hadoop/hive/lib/velocity-1.5.jar:/app/hadoop/hive/lib/maven-scm-provider-svnexe-1.4.jar:/app/hadoop/hive/lib/commons-io-2.4.jar:/app/hadoop/hive/lib/ant-launcher-1.9.1.jar:/app/hadoop/hive/lib/mail-1.4.1.jar:/app/hadoop/hive/lib/accumulo-core-1.6.0.jar:/app/hadoop/hive/lib/geronimo-jta_1.1_spec-1.1.1.jar:/app/hadoop/hive/lib/oro-2.0.8.jar:/app/hadoop/hive/lib/eigenbase-properties-1.1.5.jar:/app/hadoop/hive/lib/commons-math-2.1.jar:/app/hadoop/hive/lib/apache-log4j-extras-1.2.17.jar:/app/hadoop/hive/lib/commons-compiler-2.7.6.jar:/app/hadoop/hive/lib/commons-digester-1.8.jar:/app/hadoop/hive/lib/ST4-4.0.4.jar:/app/hadoop/hive/lib/parquet-hadoop-bundle-1.6.0.jar:/app/hadoop/hive/lib/datanucleus-core-3.2.10.jar:/app/hadoop/hive/lib/json-20090211.jar:/app/hadoop/hive/lib/bonecp-0.8.0.RELEASE.jar:/app/hadoop/hive/lib/hive-service-1.2.1.jar:/app/hadoop/hive/lib/snappy-java-1.0.5.jar:/app/hadoop/hive/lib/stax-api-1.0.1.jar:/app/hadoop/hive/lib/jetty-all-7.6.0.v20120127.jar:/app/hadoop/hive/lib/jline-2.12.jar:/app/hadoop/hive/lib/libthrift-0.9.2.jar:/app/hadoop/hive/lib/hive-testutils-1.2.1.jar:/app/hadoop/hive/lib/accumulo-fate-1.6.0.jar:/app/hadoop/hive/lib/hive-cli-1.2.1.jar:/app/hadoop/hive/lib/hive-accumulo-handler-1.2.1.jar:/app/hadoop/hive/lib/jpam-1.1.jar:/app/hadoop/hive/lib/groovy-all-2.1.6.jar:/app/hadoop/hive/lib/httpclient-4.4.jar:/app/hadoop/hive/lib/avro-1.7.5.jar:/app/hadoop/hive/lib/zookeeper-3.4.6.jar:/app/hadoop/hive/lib/hive-hwi-1.2.1.jar:/app/hadoop/hive/lib/hive-exec-1.2.1.jar:/app/hadoop/hive/lib/hive-shims-0.20S-1.2.1.jar:/app/hadoop/hive/lib/super-csv-2.2.0.jar:/app/hadoop/hive/lib/opencsv-2.3.jar:/app/hadoop/hive/lib/commons-vfs2-2.0.jar:/app/hadoop/hive/lib/hive-serde-1.2.1.jar:/app/hadoop/hive/lib/commons-beanutils-core-1.8.0.jar:/app/hadoop/hive/lib/derby-10.10.2.0.jar:/app/hadoop/hive/lib/plexus-utils-1.5.6.jar:/app/hadoop/hive/lib/datanucleus-rdbms-3.2.9.jar:/app/hadoop/hive/lib/jdo-api-3.0.1.jar:/app/hadoop/hive/lib/joda-time-2.5.jar:/app/hadoop/hive/lib/activation-1.1.jar:/app/hadoop/hive/lib/janino-2.7.6.jar:/app/hadoop/hive/lib/regexp-1.3.jar:/app/hadoop/hive/lib/hive-shims-1.2.1.jar:/app/hadoop/hive/lib/paranamer-2.3.jar:/app/hadoop/hive/lib/hive-hbase-handler-1.2.1.jar:/app/hadoop/hive/lib/tempus-fugit-1.1.jar:/app/hadoop/hive/lib/commons-codec-1.4.jar:/app/hadoop/hive/lib/hive-ant-1.2.1.jar:/app/hadoop/hive/lib/jsr305-3.0.0.jar:/app/hadoop/hive/lib/pentaho-aggdesigner-algorithm-5.1.5-jhyde.jar:/app/hadoop/hive/hcatalog/share/hcatalog/hive-hcatalog-core-1.2.1.jar

环境检查没有问题,开始启动Kylin服务:

kylin.sh start

导入样例:

$ sample.sh

然后通过Kylin的Web页面重新加载元数据,然后构建Cube就可以查询了:

hadoop 集群+kylin_第1张图片
image.png

查询:

select part_dt, sum(price) as total_selled,count(distinct seller_id) as sellers from kylin_sales group by part_dt order bypart_dt

hadoop 集群+kylin_第2张图片
image.png

转自 http://blog.csdn.net/jiangshouzhuang/article/details/64151586

你可能感兴趣的:(hadoop 集群+kylin)