例子:
INSERT OVERWRITE TABLE prices_collected_${hiveconf:wid_version}
select
pc.collect_id as product_id ,
regexp_extract(pc.price,'(\\d*\\.?\\d+)',1) as price ,
pc.region,
'' as location_area_code,
'' as city_code,
from_unixtime(unix_timestamp() , 'yyyy-MM-dd hh:mm:ss') as created_at,
from_unixtime(unix_timestamp() , 'yyyy-MM-dd hh:mm:ss') as updated_at
from products_compared_${hiveconf:wid_version} as pc
1.根据hive执行的参数来动态的设置表名称 prices_collected_${hiveconf:wid_version}
hive -hiveconf wid_version='4'
则可以通过${hiveconft:wid_version}来接收参数,生成prices_collected_4这张表
2. 使用正则表达式获取需要的信息,如:获取一段字符串中的数字
regexp_extract(pc.price,'(\\d*\\.?\\d+)',1) as price
注意hive中需要使用双斜杠来处理正则表达式
3. 获取系统时间
from_unixtime(unix_timestamp() , 'yyyy-MM-dd hh:mm:ss') as created_a
使用from_unixtime(unix_timestamp() , 'yyyy-MM-dd hh:mm:ss') 获取系统时间,格式可以根据需要调整
4. 多个表进行join的时候,可能会报错
使用set hive.auto.convert.join=false;解决
5. 创建表
create table if not exists brands (
name string,
created_at string,
updated_at string
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
ESCAPED BY '\\'
STORED AS TEXTFILE;
以文本方式进行存储,"\\"进行转义,"\t"作为换行符
6.到处hive中的某个表中的数据到本地,执行hive命令如下:
hive
-hiveconf local_path=/home/hive/hive_data/products_24_1
-hiveconf hive_table=products_24_1
-hiveconf columnstr=' name , created_at, updated_at, "released" as status '
-f /home/hive/export_hive_table_to_local.sql
需要执行的参数依次是
1.导出到本地的位置local_path
2.导出hive中的哪个表 hive_table
3. 导出products_24_1 表中的哪些字段 colunmstr
4. 根据上面的参数,在本地创建products_24_1 表,使用-f来指定调用的文件
/home/hive/export_hive_table_to_local.sql 文件内容如下:
insert overwrite local directory '${hiveconf:local_path}'
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
ESCAPED BY '\\'
STORED AS TEXTFILE
select ${hiveconf:columnstr}
from ${hiveconf:hive_table};
7.将本地文件导入到psql数据库中, hive对pg的支持不好,不能用sqoop来进行数据的导入,可以先将hive中的数据读到本地,在使用python脚本来进行文件的写入
Python代码
def insert_to_pg(conn , table_name , file_path , insert_columns=None):
conn = psycopg2.connect(conn)
cursor = conn.cursor()
if os.path.isfile( file_path ):
datafile=ReadFileProgress(file_path)
cursor.copy_from(file=datafile, table=table_name, sep='\t', null='\\N', size=81920, columns=insert_columns)
datafile.close()
Python代码
#!/usr/bin/python
# #_*_ coding: utf-8 _*_
import os , sys
import psycopg2
class ReadFileProgress:
def __init__(self, filename):
self.datafile = open(filename)
self.totalRecords = 0
self.totalBytes = os.stat(filename).st_size
self.readBytes = 0
self.datafile.readline()
i = 0
for i, l in enumerate(self.datafile):
pass
self.totalRecords = i + 1
sys.stderr.write("Number of records: %d\n" % (self.totalRecords))
self.datafile.seek(0)
self.datafile.readline()
self.perc5 = self.totalBytes / 20.0
self.perc5count = 0
self.lastPerc5 = 0
sys.stderr.write("Writing records: 0%")
def countBytes(self, size=0):
self.readBytes += size
if (self.readBytes - self.lastPerc5 >= self.perc5):
self.lastPerc5 = self.readBytes
if (int(self.readBytes / self.perc5) == 5):
sys.stderr.write("25%")
elif (int(self.readBytes / self.perc5) == 10):
sys.stderr.write("50%")
elif (int(self.readBytes / self.perc5) == 15):
sys.stderr.write("75%")
else:
sys.stderr.write(".")
sys.stderr.flush()
def readline(self, size=None):
countBytes(size)
return self.datafile.readline(size)
def read(self, size=None):
self.countBytes(size)
return self.datafile.read(size)
def close(self):
sys.stderr.write("100%\n")
self.datafile.close()
8. 从pg上导出指定表
Python代码
def do_export(conn , table_name , file_path , columns=None):
conn = psycopg2.connect(conn)
cursor = conn.cursor()
cursor.copy_to(file=file(file_path , 'w'), table=table_name, sep='\t', null='\\N', columns=columns)
cursor.close()
conn.commit()
sys.stdout.write("Transaction finished successfully.\n")
9. 则select语句中也可以通过hiveconf来传递参数,执行hive命令
hive -hiveconf name='hello hive'
INSERT OVERWRITE TABLE companies
select
'${hiveconf:name}' as name
from companies_old