TCP三次握手
三次握手(Three-way Handshake),是指建立一个TCP连接时,需要客户端和服务器总共发送3个包。为的是连接服务器指定端口,建立TCP连接,并同步连接双方的序列号和确认号并交换TCP窗口大小信息,在socket编程中,客户端执行connect()时,将触发三次握手
第一次握手:
建立连接时,客户端发送syn包(seq=j)到服务器,并进入SYN——SENT状态,等待服务器确认
SYN(Synchronize Sequence Numbers):同步序列编号
第二次握手
服务器收到syn包,必须确认客户的SYN(ack = j+1),同时自己也发送一个SYN包(seq=k),即SYN+ACK包,此时服务器进入SYN_RECV状态
第三次握手
客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED(连接成功)状态,完成三次握手
TCP四次挥手
TCP的连接的拆除需要发送四个包,因此称为四次挥手(four-way handshake)。由于TCP连接是全双工的,因此每个反向都必须单独进行关闭,原则是当一方完成它的数据发送任务后就能发送一个FIN来终止这个方向的连接,收到一个FIN只意外着这一方向上没有数据流动,一个TCP连接在收到一个FIN后仍能发送数据。客户端或服务器均可主动发起挥手动作,在socket编程中,任何一方执行close()操作即可产生挥手操作。
(1)主动方A发送一个FIN,用来关闭A到被动方B的数据传送。
(2)被动方B收到这个FIN,它发回一个ACK,确认序号为收到的序号加1(报文段5)。和SYN一样,一个FIN将占用一个。
(3)被动方B关闭与主动方A的连接,发送一个FIN给客户端A(报文段6)。
(4)客户端A发回ACK报文确认,并将确认序号设置为收到序号加1(报文段7)
代码分析
客户端申请TCP连接
int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) { struct socket *sock; struct sockaddr_storage address; int err, fput_needed; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) goto out; err = move_addr_to_kernel(uservaddr, addrlen, &address); if (err < 0) goto out_put; err = security_socket_connect(sock, (struct sockaddr *)&address, addrlen); if (err) goto out_put; err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, sock->file->f_flags); out_put: fput_light(sock->file, fput_needed); out: return err; }
客户端发送SYN报文
int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) { struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; struct inet_sock *inet = inet_sk(sk); struct tcp_sock *tp = tcp_sk(sk); __be16 orig_sport, orig_dport; __be32 daddr, nexthop; struct flowi4 *fl4; struct rtable *rt; int err; struct ip_options_rcu *inet_opt; struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row; if (addr_len < sizeof(struct sockaddr_in)) return -EINVAL; if (usin->sin_family != AF_INET) return -EAFNOSUPPORT; nexthop = daddr = usin->sin_addr.s_addr; inet_opt = rcu_dereference_protected(inet->inet_opt, lockdep_sock_is_held(sk)); if (inet_opt && inet_opt->opt.srr) { if (!daddr) return -EINVAL; nexthop = inet_opt->opt.faddr; } orig_sport = inet->inet_sport; orig_dport = usin->sin_port; fl4 = &inet->cork.fl.u.ip4; rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, RT_CONN_FLAGS(sk), sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport, orig_dport, sk); if (IS_ERR(rt)) { err = PTR_ERR(rt); if (err == -ENETUNREACH) IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); return err; } if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { ip_rt_put(rt); return -ENETUNREACH; } if (!inet_opt || !inet_opt->opt.srr) daddr = fl4->daddr; if (!inet->inet_saddr) inet->inet_saddr = fl4->saddr; sk_rcv_saddr_set(sk, inet->inet_saddr); if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { /* Reset inherited state */ tp->rx_opt.ts_recent = 0; tp->rx_opt.ts_recent_stamp = 0; if (likely(!tp->repair)) tp->write_seq = 0; } inet->inet_dport = usin->sin_port; sk_daddr_set(sk, daddr); inet_csk(sk)->icsk_ext_hdr_len = 0; if (inet_opt) inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; tcp_set_state(sk, TCP_SYN_SENT); err = inet_hash_connect(tcp_death_row, sk); if (err) goto failure; sk_set_txhash(sk); rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, inet->inet_sport, inet->inet_dport, sk); if (IS_ERR(rt)) { err = PTR_ERR(rt); rt = NULL; goto failure; } sk->sk_gso_type = SKB_GSO_TCPV4; sk_setup_caps(sk, &rt->dst); rt = NULL; if (likely(!tp->repair)) { if (!tp->write_seq) tp->write_seq = secure_tcp_seq(inet->inet_saddr, inet->inet_daddr, inet->inet_sport, usin->sin_port); tp->tsoffset = secure_tcp_ts_off(sock_net(sk), inet->inet_saddr, inet->inet_daddr); } inet->inet_id = tp->write_seq ^ jiffies; if (tcp_fastopen_defer_connect(sk, &err)) return err; if (err) goto failure; err = tcp_connect(sk); if (err) goto failure; return 0; failure: tcp_set_state(sk, TCP_CLOSE); ip_rt_put(rt); sk->sk_route_caps = 0; inet->inet_dport = 0; return err; }
服务器等待连接请求
struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern) { struct inet_connection_sock *icsk = inet_csk(sk); struct request_sock_queue *queue = &icsk->icsk_accept_queue; struct request_sock *req; struct sock *newsk; int error; lock_sock(sk); error = -EINVAL; if (sk->sk_state != TCP_LISTEN) goto out_err; if (reqsk_queue_empty(queue)) { long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); error = -EAGAIN; if (!timeo) goto out_err; error = inet_csk_wait_for_connect(sk, timeo); if (error) goto out_err; } req = reqsk_queue_remove(queue, sk); newsk = req->sk; if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) { spin_lock_bh(&queue->fastopenq.lock); if (tcp_rsk(req)->tfo_listener) { req->sk = NULL; req = NULL; } spin_unlock_bh(&queue->fastopenq.lock); } out: release_sock(sk); if (req) reqsk_put(req); return newsk; out_err: newsk = NULL; req = NULL; *err = error; goto out; }
服务器接收SYN,发送SYN+ACK
int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) { struct sock *rsk; if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ struct dst_entry *dst = sk->sk_rx_dst; sock_rps_save_rxhash(sk, skb); sk_mark_napi_id(sk, skb); if (dst) { if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif || !dst->ops->check(dst, 0)) { dst_release(dst); sk->sk_rx_dst = NULL; } } tcp_rcv_established(sk, skb); return 0; } if (tcp_checksum_complete(skb)) goto csum_err; if (sk->sk_state == TCP_LISTEN) { struct sock *nsk = tcp_v4_cookie_check(sk, skb); if (!nsk) goto discard; if (nsk != sk) { if (tcp_child_process(sk, nsk, skb)) { rsk = nsk; goto reset; } return 0; } } else sock_rps_save_rxhash(sk, skb); if (tcp_rcv_state_process(sk, skb)) { rsk = sk; goto reset; } return 0; reset: tcp_v4_send_reset(rsk, skb); discard: kfree_skb(skb); return 0; csum_err: TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); goto discard; }
客户端收到SYN+ACK,发送ACK
static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th, unsigned int len) { .. tcp_send_ack(sk); ... }