中午再看一眼!高考数学“无耻”得分法,只能帮你们到这了

中午再看一眼!高考数学“无耻”得分法,只能帮你们到这了_第1张图片

说起高考数学,那真是几家痛苦几家愁。在高考如此重要的考试中,如果真遇到不会做的题目,难道真的要眼睁睁看着试卷空白吗?下面就让小编教大家几招数学“无耻”得分的技巧。

到了高考考场,有些题目真的不会怎么办?跳过去假装没看到?

既然不会做也不想丢分,就让我们来做(wu)点(chi)实(tou)事(fen)吧。

中午再看一眼!高考数学“无耻”得分法,只能帮你们到这了_第2张图片

首先是一些小聪明

1.圆锥曲线中最后题往往联立起来很复杂,导致k算不出,这时你可以取特殊值法强行算出k。过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就ok了。

2.选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差2倍小的就是答案,体积找到差3倍小的就是答案,屡试不爽!

3.三角函数第二题,如求a(cosB+cosC)/(b+c)coA之类的先边化角,然后把第一题算出,比如角A等于60度,直接假设B和C都等于60°带入求解。省时省力!

4.空间几何证明过程中有一步实在想不出的话,把没用过的条件直接写上然后得出想不出的那个结论即可。如果第一题真心不会做直接写结论成立,则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!

5.立体几何中第二问叫你求余弦值啥的一般都用坐标法!如果求角度则常规法简单!

6.选择题中考线面关系的可以先从D项看起,前面都是来浪费你时间的。

7.选择题中求取值范围的直接观察答案,从每个选项中取与其他选项不同的特殊点带入,能成立的就是答案。

8.线性规划题目直接求交点带入比较大小即可。

9.遇到这样的选项 A.1/2 B.1 C.3/2 D.5/2 这样的话答案一般是D。因为B可以看作是2/2 ,前面三个都是出题者凑出来的,如果答案在前面3个的话 D应该是2(4/2)。


中午再看一眼!高考数学“无耻”得分法,只能帮你们到这了_第3张图片

怎么样,是不是感觉妈妈再也不担心你的数学了。

以上只是一些小技巧,数学想在不会的情况下再多拿一些分,还需要在大题上多拿分。

大题文科第一题一般是三角函数题,第一步一般都是需要将三角函数化简成标准形式Asin(wx+fai)+c,接下来按题做就行了,注意二倍角的降幂作用以及辅助角(合一)公式,周期公式,对称轴、对称中心、单调区间、最大值、最小值都是用整体法求解。

求最值时通过自变量的范围推到里面整体u=wx+fai的范围,然后可以直接画sinu的图像,避免画平移的图像。这部分题还有一种就是解三角形的问题,运用正弦定理、余弦定理、面积公式,通常有两个方向,即角化成边和边化成角,得根据具体问题具体分析哪个方便一些,遇到复杂的题就把未知量列成未知数,根据定理列方程组,然后解方程组即可。

理科如果考数列题的话,注意等差、等比数列通项公式、前n项和公式;证明数列是等差或等比直接用定义法(后项减前项为常数/后项比前项为常数),求数列通项公式,如为等差或等比直接代公式即可,其它的一般注意类型采用不同的方法(已知Sn求an、已知Sn与an关系求an(前两种都是利用an=Sn-Sn-1,注意讨论n=1、n>1),累加法、累乘法、构造法(所求数列本身不是等差或等比,需要将所求数列适当变形构造成新数列lamt,通过构造一个新数列使其为等差或等比,便可求其通项,再间接求出所求数列通项);

数列的求和第一步要注意通项公式的形式,然后选择合适的方法(直接法、分组求和法、裂项相消法、错位相减法、倒序相加法等)进行求解。如有其它问题,注意放缩法证明,还有就是数列可以看成一个以n为自变量的函数。

第二题是立体几何题,证明题注意各种证明类型的方法(判定定理、性质定理),注意引辅助线,一般都是对角线、中点、成比例的点、等腰等边三角形中点等等,理科其实证明不出来直接用向量法也是可以的。计算题主要是体积,注意将字母换位(等体积法);

线面距离用等体积法。理科还有求二面角、线面角等,用建立空间坐标系的方法(向量法)比较简单,注意各个点的坐标的计算,不要算错。

第三题是概率与统计题,主要有频率分布直方图,注意纵坐标(频率/组距)。求概率的问题,文科列举,然后数数,别数错、数少了啊,概率=满足条件的个数/所有可能的个数;

理科用排列组合算数。独立性检验根据公式算K方值,别算错数了。回归分析,根据数据代入公式(公式中各项的意义)即可求出直线方程,注意(x平均,y平均)点满足直线方程。

理科还有随机变量分布列问题,注意列表时把可能取到的所有值都列出,别少了,然后分别算概率,最后检查所有概率和是否是1,不是1说明要不你概率算错了,要不随机变量数少了。

● 第四题是函数题,第一步别忘了先看下定义域,一般都得求导,求单调区间时注意与定义域取交。

看看题型,将题型转化一下,转化到你学过的内容(利用导数判断单调性(含参数时要利用分类讨论思想,一般求导完、通分完分子是二次函数的比较多,讨论开口a=0、a<0、a>0和后两种情况下delt<=0、delt>0)

求极值(根据单调区间列表或画图像简图)、求最值(所有的极值点与两端点值比较)等),典型的有恒成立问题、存在问题(注意与恒成立问题的区别),不管是什么都要求函数的最大值或最小值,注意方法以及比较定义域端点值,注意函数图象(数形结合思想:求方程的根或解、曲线的交点个数)的运用。

证明有关的问题可以利用证明的各种方法(综合法、分析法、反证法、理科的数学归纳法)。多问的时候注意后面的问题一般需要用到前面小问的结论。抽象的证明问题别光用眼睛在那看,得设出里面的未知量,通过设而不求思想证明问题。

第五题是圆锥曲线题,第一问求曲线方程,注意方法(定义法、待定系数法、直接求轨迹法、反求法、参数方程法等等)。一定检查下第一问算的数对不,要不如果算错了第二问做出来了也白算了。

第二问有直线与圆锥曲线相交时,记住“联立完事用联立”,第一步联立,根据韦达定理得出两根之和、两根之差、因一般都是交于两点,注意验证判别式>0,设直线时注意讨论斜率是否存在。

第二步也是最关键的就是用联立,关键是怎么用联立,即如何将题里的条件转化成你刚才联立完的x1+x2和x1x2,然后将结果代入即可,通常涉及的题型有弦长问题(代入弦长公式)、定比分点问题(根据比例关系建立三点坐标之间的一个关系式(横坐标或纵坐标),再根据根与系数的关系建立圆锥曲线上的两点坐标的两个关系式,从这三个关系式入手解决)、点对称问题(利用两点关于直线对称的两个条件,即这两点的连线与对称轴垂直和这两点的中点在对称轴上)、定点问题(直线y=kx+b过定点即找出k与b的关系,如b=5k+7,然后将b代入到直线方程y=kx+5k+7=k(x+5)+7即可找出定点(-5,7))、定值问题(基本思想是函数思想,将要证明或要求解的量表示为某个合适变量(斜率、截距或坐标)的函数,通过适当化简,消去变量即得定值。)、最值或范围问题(基本思想还是函数思想,将要求解的量表示为某个合适变量(斜率、截距或坐标)的函数,利用函数求值域的方法(首先要求变量的范围即定义域—别忘了delt>0,然后运用求值域的各种方法—直接法、换元法、图像法、导数法、均值不等式法(注意验证“=”)等)求出最值(最大、最小),即范围也求出来了)。

抽象的证明问题别光用眼睛在那看,得设出里面的未知量,通过设而不求思想证明问题。

来源:高考数学

你可能感兴趣的:(中午再看一眼!高考数学“无耻”得分法,只能帮你们到这了)