Spark基于自定义聚合函数实现【列转行、行转列】

一.分析

  Spark提供了非常丰富的算子,可以实现大部分的逻辑处理,例如,要实现行转列,可以用hiveContext中支持的concat_ws(',', collect_set('字段'))实现。但是这有明显的局限性【sqlContext不支持】,因此,基于编码逻辑或自定义聚合函数实现相同的逻辑就显得非常重要了。

二.列转行代码实现 

 1 package utils
 2 import com.hankcs.hanlp.tokenizer.StandardTokenizer
 3 import org.apache.log4j.{Level, Logger}
 4 import org.apache.spark.sql.{SparkSession, Row}
 5 import org.apache.spark.sql.types.{StringType, StructType, StructField}
 6 /**
 7   * Created by Administrator on 2019/12/17.
 8   */
 9 object Column2Row {
10   /**
11     * 设置日志级别
12     */
13   Logger.getLogger("org").setLevel(Level.WARN)
14   def main(args: Array[String]) {
15     val spark = SparkSession.builder().master("local[2]").appName(s"${this.getClass.getSimpleName}").getOrCreate()
16     val sc = spark.sparkContext
17     val sqlContext = spark.sqlContext
18 
19     val array : Array[String] = Array("spark-高性能大数据解决方案", "spark-机器学习图计算", "solr-搜索引擎应用广泛", "solr-ES灵活高效")
20     val rdd = sc.parallelize(array)
21 
22     val termRdd = rdd.map(row => { // 标准分词,挂载Hanlp分词器
23     var result = ""
24       val type_content = row.split("-")
25       val termList = StandardTokenizer.segment(type_content(1))
26       for(i <- 0 until termList.size()){
27         val term = termList.get(i)
28         if(!term.nature.name.contains("w") && !term.nature.name().contains("u") && !term.nature.name().contains("m")){
29           if(term.word.length > 1){
30             result += term.word + " "
31           }
32         }
33       }
34       Row(type_content(0),result)
35     })
36 
37     val structType = StructType(Array(
38       StructField("arth_type", StringType, true),
39       StructField("content", StringType, true)
40     ))
41 
42     val termDF = sqlContext.createDataFrame(termRdd,structType)
43     termDF.show(false)
44     /**
45       * 列转行
46       */
47     val termCheckDF = termDF.rdd.flatMap(row =>{
48       val arth_type = row.getAs[String]("arth_type")
49       val content = row.getAs[String]("content")
50       var res = Seq[Row]()
51       val content_array = content.split(" ")
52       for(con <- content_array){
53         res = res :+ Row(arth_type,con)
54       }
55       res
56     }).collect()
57 
58     val termListDF = sqlContext.createDataFrame(sc.parallelize(termCheckDF), structType)
59     termListDF.show(false)
60 
61     sc.stop()
62   }
63 }

三.列转行执行结果

  列转行之前:

  Spark基于自定义聚合函数实现【列转行、行转列】_第1张图片

  列转行:

  Spark基于自定义聚合函数实现【列转行、行转列】_第2张图片

四.行转列代码实现

 1 package test
 2 
 3 import org.apache.log4j.{Level, Logger}
 4 import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
 5 import org.apache.spark.sql.types._
 6 import org.apache.spark.sql.{Row, SparkSession}
 7 
 8 /**
 9   * 自定义聚合函数实现行转列
10   */
11 object AverageUserDefinedAggregateFunction extends UserDefinedAggregateFunction{
12   //聚合函数输入数据结构
13   override def inputSchema:StructType = StructType(StructField("input", StringType) :: Nil)
14 
15   //缓存区数据结构
16   override def bufferSchema: StructType = StructType(StructField("result", StringType) :: Nil)
17 
18   //结果数据结构
19   override def dataType : DataType = StringType
20 
21   // 是否具有唯一性
22   override def deterministic : Boolean = true
23 
24   //初始化
25   override def initialize(buffer : MutableAggregationBuffer) : Unit = {
26     buffer(0) = ""
27   }
28 
29   //数据处理 : 必写,其它方法可选,使用默认
30   override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
31     if(input.isNullAt(0)) return
32     if(buffer.getString(0) == null || buffer.getString(0).equals("")){
33       buffer(0) = input.getString(0) //拼接字符串
34     }else{
35       buffer(0) = buffer.getString(0) + "," + input.getString(0) //拼接字符串
36     }
37   }
38 
39   //合并
40   override def merge(bufferLeft: MutableAggregationBuffer, bufferRight: Row): Unit ={
41     if(bufferLeft(0) == null || bufferLeft(0).equals("")){
42       bufferLeft(0) = bufferRight.getString(0) //拼接字符串
43     }else{
44       bufferLeft(0) = bufferLeft(0) + "," + bufferRight.getString(0) //拼接字符串
45     }
46   }
47 
48   //计算结果
49   override def evaluate(buffer: Row): Any  = buffer.getString(0)
50 }
51 
52 /**
53   * Created by Administrator on 2019/12/17.
54   */
55 object Row2Columns {
56   /**
57     * 设置日志级别
58     */
59   Logger.getLogger("org").setLevel(Level.WARN)
60   def main(args: Array[String]): Unit = {
61     val spark = SparkSession.builder().master("local[2]").appName(s"${this.getClass.getSimpleName}").getOrCreate()
62     val sc = spark.sparkContext
63     val sqlContext = spark.sqlContext
64 
65     val array : Array[String] = Array("大数据-Spark","大数据-Hadoop","大数据-Flink","搜索引擎-Solr","搜索引擎-ES")
66 
67     val termRdd = sc.parallelize(array).map(row => { // 标准分词,挂载Hanlp分词器
68       val content = row.split("-")
69       Row(content(0), content(1))
70     })
71 
72     val structType = StructType(Array(
73       StructField("arth_type", StringType, true),
74       StructField("content", StringType, true)
75     ))
76 
77     val termDF = sqlContext.createDataFrame(termRdd,structType)
78     termDF.show()
79     termDF.createOrReplaceTempView("term")
80 
81     /**
82       * 注册udaf
83       */
84     spark.udf.register("concat_ws", AverageUserDefinedAggregateFunction)
85     spark.sql("select arth_type,concat_ws(content) content from term group by arth_type").show()
86   }
87 }

五.行转列执行结果

  行转列之前:

  Spark基于自定义聚合函数实现【列转行、行转列】_第3张图片

  行转列:

  Spark基于自定义聚合函数实现【列转行、行转列】_第4张图片

你可能感兴趣的:(Spark基于自定义聚合函数实现【列转行、行转列】)