1)启动环境 

 start-all.sh

2)产看状态

  jps

0613 NameNode

10733 DataNode

3455 NodeManager

15423 Jps

11082 ResourceManager

10913 SecondaryNameNode

3)利用Eclipse编写jar

  • 1.编写WordMap

  

public class MrMap  extends Mapper{

 

protected void map(Object key, Text value, Context context) {

String line= value.toString();

String[] words = line.split(" ");

for (String str : words) {

Text text=new Text(str);

IntWritable num=new IntWritable(1);

    try {

context.write(text, num);

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

}

   };

}

  • 2.编写WordReduce类


public class WordReduce extends Reducer {


protected void reduce(Text text, Iterable itrs, Context context) {

int sum = 0;

for (IntWritable itr : itrs) {

sum = sum + itr.get();


}

try {

context.write(text, new IntWritable(sum));

} catch (IOException e) {

// TODO Auto-generated catch block

e.printStackTrace();

} catch (InterruptedException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}


};


}

  • 3.编写WordCount类

public class WordCount {


/**

* @param args

* @throws IOException

* @throws InterruptedException

* @throws ClassNotFoundException

*/

public static void main(String[] args) throws IOException {


Configuration conf = new Configuration();

FileSystem fs = FileSystem.get(conf);


Job job = null;

try {

job = Job.getInstance(conf);

job.setJobName("wc");

job.setJarByClass(WordCount.class);


job.setMapperClass(WordMap.class);

job.setReducerClass(WordReduce.class);


job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(IntWritable.class);


FileInputFormat.addInputPath(job, new Path("/word.txt"));

if (fs.exists(new Path("/out"))) {

fs.delete(new Path("/out"));

}

FileOutputFormat.setOutputPath(job, new Path("/out"));


System.exit(job.waitForCompletion(true) ? 0 : 1);

} catch  (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

}


}


}

4)导出jar包

MapReduce:计算单词的个数_第1张图片


5)通过ftp上传jar到linux目录


6)运行jar包

 hadoop jar wc.jar   com.mc.WordCount   /     /out


7)如果map和reduce都100%,以及

MapReduce:计算单词的个数_第2张图片


表示运行成功!!

8)产看结果

hadoop fs -tail  /out/part-r-00000