Twitter snowflake ID 算法之 golang 实现

我的博客原文 Twitter snowflake ID 算法之 golang 实现

是什么?

snowflake ID 算法是 twitter 使用的唯一 ID 生成算法,为了满足 Twitter 每秒上万条消息的请求,使每条消息有唯一、有一定顺序的 ID ,且支持分布式生成。

主要解决了高并发时 ID 生成不重复的问题

结构

snowflake ID 的结构是一个 64 bit 的 int 型数据。

如图所示 :


Twitter snowflake ID 算法之 golang 实现_第1张图片
snowflake-64bit

1 bit:不使用,可以是 1 或 0

41 bit:记录时间戳 (当前时间戳减去用户设置的初始时间,毫秒表示),可记录最多 69 年的时间戳数据

10 bit:用来记录分布式节点 ID,一般每台机器一个唯一 ID,也可以多进程每个进程一个唯一 ID,最大可部署 1024 个节点

12 bit:序列号,用来记录不同 ID 同一毫秒时的序列号,最多可生成 4096 个序列号

时间戳、节点 ID 和序列号的位数可以根据业务自由浮动调整

唯一 ID 原理

假设在一个节点 (机器) 上,节点 ID 唯一,并发时有多个线程去生成 ID。
满足以上条件时,如果多个线程在同一毫秒内生成 ID,那么序列号步进 (加一),这里要保证序列号的操作并发安全,使同一毫秒内生成的 ID 拥有不同序列号。如果序列号达到上限,则等待这一毫秒结束,在新的毫秒继续步进。

这样保证了:
所有生成的 ID 按时间趋势递增 (有序)
整个分布式系统内不会产生重复 ID (唯一)

用 go 实现的思路

why go ?

go 有封装好的协程 goroutine,可以很好的处理并发,可以加锁保证数据的同步安全,有很好的性能。当然其它语言如 Java、Scala 也是完全可以的。

思路

1、确定唯一的节点 ID
2、设置一个初始时间戳 (毫秒表示)
3、处理并发时序列号步进和并发安全问题
4、组装各个 bits ,生成最终的 64 bit ID

编码实现

首先我们要引入基础的模块

import (
    "fmt"        // 测试、打印
    "time"      // 获取时间
    "errors"    // 生成错误
    "sync"      // 使用互斥锁
)

基础常量定义

这里求最大值使用了位运算,-1 的二进制表示为 1 的补码,感兴趣的同学可以自己算算试试 -1 ^ (-1 << nodeBits) 这里是不是等于 1023

const (
    nodeBits  uint8 = 10          // 节点 ID 的位数
    stepBits  uint8 = 12            // 序列号的位数
    nodeMax   int64 = -1 ^ (-1 << nodeBits)   // 节点 ID 的最大值,用于检测溢出
    stepMax   int64 = -1 ^ (-1 << stepBits)    // 序列号的最大值,用于检测溢出
    timeShift uint8 = nodeBits + stepBits    // 时间戳向左的偏移量
    nodeShift uint8 = stepBits  // 节点 ID 向左的偏移量
)

设置初始时间的时间戳 (毫秒表示),我这里使用 twitter 设置的一个时间,这个可以随意设置 ,比现在的时间靠前即可。

var Epoch int64 = 1288834974657 // timestamp 2006-03-21:20:50:14 GMT

ID 结构和 Node 结构的实现
这里我们申明一个 int64 的 ID 类型 (这样可以为此类型定义方法,比直接使用 int64 变量更灵活)

type ID int64

Node 结构用来存储一个节点 (机器) 上的基础数据

type Node struct {
    mu sync.Mutex        // 添加互斥锁,保证并发安全
    timestamp int64      // 时间戳部分
    node      int64      // 节点 ID 部分  
    step      int64      // 序列号 ID 部分          
}

获取 Node 类型实例的函数,用于获得当前节点的 Node 实例

func NewNode(node int64) (*Node, error) {
    // 如果超出节点的最大范围,产生一个 error
    if node < 0 || node > nodeMax {
        return nil, errors.New("Node number must be between 0 and 1023")
    }
    // 生成并返回节点实例的指针
    return &Node{
        timestamp: 0,
        node:      node,
        step:      0,
    }, nil
}

最后一步,生成 ID 的方法

func (n *Node) Generate() ID {
    
    n.mu.Lock() // 保证并发安全, 加锁
    defer n.mu.Unlock() // 方法运行完毕后解锁

    // 获取当前时间的时间戳 (毫秒数显示)
    now := time.Now().UnixNano() / 1e6

    if n.timestamp == now {
        // step 步进 1 
        n.step ++

        // 当前 step 用完
        if n.step > stepMax {
            // 等待本毫秒结束
            for now <= n.timestamp {
                now = time.Now().UnixNano() / 1e6
            }
        }

    } else {
        // 本毫秒内 step 用完
        n.step = 0
    }
    
    n.timestamp = now
    // 移位运算,生产最终 ID
    result := ID((now - Epoch) << timeShift | (n.node << nodeShift) | (n.step))

    return result
}

测试

我们使用循环去开启多个 goroutine 去并发生成 ID,然后使用 map 以 ID 作为键存储,来判断是否生成了唯一的 ID

main 函数代码

func main() {
    // 测试脚本

    // 生成节点实例
    node, err := NewNode(1)

    if err != nil {
        fmt.Println(err)
        return
    }

    ch := make(chan ID)
    count := 10000
    // 并发 count 个 goroutine 进行 snowflake ID 生成
    for i := 0; i < count; i++ {
        go func() {
            id := node.Generate()
            ch <- id
        }()
    }   
        
    defer close(ch)

    m := make(map[ID]int)
    for i := 0; i < count; i++  {
        id := <- ch
        // 如果 map 中存在为 id 的 key, 说明生成的 snowflake ID 有重复
        _, ok := m[id]
        if ok {
            fmt.Printf("ID is not unique!\n")
            return
        }
        // 将 id 作为 key 存入 map
        m[id] = i
    }
    // 成功生成 snowflake ID
    fmt.Println("All ", count, " snowflake ID generate successed!\n")
}

完整的程序实例 :点我查看

上线使用

你可以用 go 的 net/http 包处理并发请求,生成 ID 并且返回 http 响应结果。
Just do it

参考文章

【1】理解分布式id生成算法SnowFlake
【2】bwmarrin/snowflake

你可能感兴趣的:(Twitter snowflake ID 算法之 golang 实现)