双显卡笔记本Ubuntu18.04LTS 安装tensorflow-gpu版本(Nvidia驱动396版本下载地址、CUDA、cuDNN注意)-2018-09-06

过程:i7笔记本一台, 960m和intel双显卡(痛苦之源)

流程参考https://blog.csdn.net/botao_li/article/details/80745535

双显卡装linux毛病多,几个要避开的坑:

1. 不要直接下各种官网地方推荐你的390稳定版,加ppa那个方法也不对。CUDA9.2需要396版,对就是那个short lived branch 396版本。

驱动下载地址:https://www.nvidia.cn/object/unix-cn.html

2. 安装驱动前要关gdm进控制台($ service gdm stop),装驱动要加参数 --no-opengl-files, 忘了加会进入login死循环,解决办法,1804进wayLand模式,或者另一台机器ssh上来(小心!Ubuntu1804默认没有开SSH),卸载驱动,重新装。

3. 后面就是装CUDA,cuDNN,没什么特别的。

4. 我是Anaconda 方式装的Tensorflow

conda install tensorflow-gpu

之后,就可以愉快的使用了。

Detected 1 CUDA Capable device(s)

Device 0: "GeForce GTX 760M"

  CUDA Driver Version / Runtime Version          9.2 / 9.2

  CUDA Capability Major/Minor version number:    3.0

  Total amount of global memory:                2002 MBytes (2099511296 bytes)

  ( 4) Multiprocessors, (192) CUDA Cores/MP:    768 CUDA Cores

  GPU Max Clock rate:                            719 MHz (0.72 GHz)

  Memory Clock rate:                            2004 Mhz

  Memory Bus Width:                              128-bit

  L2 Cache Size:                                262144 bytes

  Maximum Texture Dimension Size (x,y,z)        1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)

  Maximum Layered 1D Texture Size, (num) layers  1D=(16384), 2048 layers

  Maximum Layered 2D Texture Size, (num) layers  2D=(16384, 16384), 2048 layers

  Total amount of constant memory:              65536 bytes

  Total amount of shared memory per block:      49152 bytes

  Total number of registers available per block: 65536

  Warp size:                                    32

  Maximum number of threads per multiprocessor:  2048

  Maximum number of threads per block:          1024

  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)

  Maximum memory pitch:                          2147483647 bytes

  Texture alignment:                            512 bytes

  Concurrent copy and kernel execution:          Yes with 1 copy engine(s)

  Run time limit on kernels:                    Yes

  Integrated GPU sharing Host Memory:            No

  Support host page-locked memory mapping:      Yes

  Alignment requirement for Surfaces:            Yes

  Device has ECC support:                        Disabled

  Device supports Unified Addressing (UVA):      Yes

  Device supports Compute Preemption:            No

  Supports Cooperative Kernel Launch:            No

  Supports MultiDevice Co-op Kernel Launch:      No

  Device PCI Domain ID / Bus ID / location ID:  0 / 1 / 0

你可能感兴趣的:(双显卡笔记本Ubuntu18.04LTS 安装tensorflow-gpu版本(Nvidia驱动396版本下载地址、CUDA、cuDNN注意)-2018-09-06)