在 多线程实现方式 文中讲述了几种开启多线程的方式,每种方式都有其特定的使用场景,本文将剖析带有返回值的线程实现方式。FutureTask类关系如下:
首先看FutureTask的两个构造方法:
//构造方法一
public FutureTask(Callable callable) {
if (callable == null)
throw new NullPointerException();
this.callable = callable;
this.state = NEW; // ensure visibility of callable
}
//构造方法二
public FutureTask(Runnable runnable, V result) {
//将runnable包装成callable
this.callable = Executors.callable(runnable, result);
this.state = NEW; // ensure visibility of callable
}
第一个构造方法我们比较熟悉,第二个构造方法可以用 Runnable 构造 FutureTask,将 Runnable 使用适配器模式 构造成 FutureTask ,使其具有 FutureTask 的特性,如可在主线程捕获Runnable的子线程异常。
构造完FutureTask,就可以用FutureTask构造Thread,并启动线程。启动线程会调用FutureTask的run()方法,run()方法是FutureTask的实现关键:
public void run() {
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return;
try {
Callable c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
//1、获取返回值
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
//2、FutureTask的异常处理关键
setException(ex);
}
if (ran)
//3、设置返回值
set(result);
}
} finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}
//异常处理
protected void setException(Throwable t) {
if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
outcome = t;
//设置为异常状态
UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL);
finishCompletion();
}
}
//设置正常返回值
protected void set(V v) {
if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
outcome = v;
//设置为正常结束状态
UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
finishCompletion();
}
}
在run()方法中,会调用callable对象的call()方法,并获取方法返回值,同时对call()方法中的异常进行了处理。异常时会将outcome设置为抛出的异常,正常时会将outcome设置为正常返回值,并将state设置成相应状态。
run()分析完,下一步就要分析future.get()获取线程返回结果时如何工作。
public V get() throws InterruptedException, ExecutionException {
int s = state;
//未完成,则进入阻塞状态,等待完成
if (s <= COMPLETING)
s = awaitDone(false, 0L);
return report(s); //判断处理返回值
}
private V report(int s) throws ExecutionException {
Object x = outcome;
//根据state判断线程处理状态,并对outcome返回结果进行强转。
if (s == NORMAL)
return (V)x;
if (s >= CANCELLED)
throw new CancellationException();
throw new ExecutionException((Throwable)x); //在主线程中抛出异常
}
分析完run()方法和get()方法,其实对于FutureTask的返回值获取原理有了基本了解。下面继续分析其他要点:
1、线程状态
//FutureTask定义的7种线程状态
private volatile int state;
private static final int NEW = 0;
private static final int COMPLETING = 1; //设置返回值的过程,这个状态很短,可以划分为已完成状态。参考isDone()方法;
private static final int NORMAL = 2;
private static final int EXCEPTIONAL = 3;
private static final int CANCELLED = 4;
private static final int INTERRUPTING = 5;
private static final int INTERRUPTED = 6;
//是否已取消
public boolean isCancelled() {
return state >= CANCELLED;
}
//是否已完成
public boolean isDone() {
return state != NEW;
}
线程的状态在执行过程不同阶段不断变化,这是FutureTask的状态控制关键。注意state是volatile修饰,保障了多线程间的可见性。
2、阻塞等待
线程status为NEW和COMPLETING的时候,会进入awaitDone方法,表示要等待完成。awaitDone方法如下:
private int awaitDone(boolean timed, long nanos)
throws InterruptedException {
final long deadline = timed ? System.nanoTime() + nanos : 0L;
WaitNode q = null;
boolean queued = false;
for (;;) {
//线程是否被打断
if (Thread.interrupted()) {
removeWaiter(q);
throw new InterruptedException();
}
int s = state;
//已完成
if (s > COMPLETING) {
if (q != null)
q.thread = null;
return s;
} //正在处理返回值,这里时间很短,所以调用Thread.yield()方法,短时间的线程让步。
else if (s == COMPLETING) // cannot time out yet
Thread.yield();
else if (q == null) //创建等待节点
q = new WaitNode();
else if (!queued) //CAS把该线程加入等待队列
queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
q.next = waiters, q);
else if (timed) { //超时等待
nanos = deadline - System.nanoTime();
if (nanos <= 0L) {
removeWaiter(q);
return state;
}
//阻塞一段时间
LockSupport.parkNanos(this, nanos);
}
else
//线程阻塞,等待被唤醒
LockSupport.park(this);
}
}
整个awaitDone的流程,暗含很多优化逻辑,值得思考。
3、唤醒
private void finishCompletion() {
// assert state > COMPLETING;
for (WaitNode q; (q = waiters) != null;) {
if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
for (;;) {
Thread t = q.thread;
if (t != null) {
q.thread = null;
LockSupport.unpark(t); //唤醒线程
}
WaitNode next = q.next;
if (next == null)
break;
q.next = null; // unlink to help gc
q = next;
}
break;
}
}
done();
callable = null; // to reduce footprint
}
finishCompletion()会在一下三处被调用:
在任务被取消、正常完成或执行异常时会调用finishCompletion()方法,从而唤醒等待队列中的线程。
多线程系列目录(不断更新中):
线程启动原理
线程中断机制
多线程实现方式
FutureTask实现原理
线程池之ThreadPoolExecutor概述
线程池之ThreadPoolExecutor使用
线程池之ThreadPoolExecutor状态控制
线程池之ThreadPoolExecutor执行原理
线程池之ScheduledThreadPoolExecutor概述
线程池之ScheduledThreadPoolExecutor调度原理
线程池的优雅关闭实践