CountDownLatch的简单实现

  业务背景假设:现在一个前端页面的展示需要调用3个外部电商平台接口的数据,所以在我们提供给前端的这个接口上,我们要调用3个外部电商接口,最后需要对所有的数据做一个整合,方便前端展示。

  一般情况我们都是顺序调用3个电商接口,得到数据后调用整合方法,假设每个电商接口调用时间为2秒,如下:

  public static void main(String[] args) throws Exception{

  long startTime = new Date().getTime();

  //调用第一个电商平台的接口取得订单数,用时2s

  Thread.sleep(2000);

  System.out.println("获取电商平台1的数据");

  //调用第二个电商平台的接口取得订单数,用时2s

  Thread.sleep(2000);

  System.out.println("获取电商平台2的数据");

  //调用第三个电商平台的接口取得订单数,用时2s

  Thread.sleep(2000);

  System.out.println("获取电商平台3的数据");

  System.out.println("对三个电商平台的数据进行合并");

  long endTime = new Date().getTime();

  long time = endTime - startTime;

  System.out.println("总耗时" + time);

  }

  调用后耗时6s,如下:

  

CountDownLatch的简单应用和实现原理_第1张图片


  以上方法耗时太长了,需要优化,优化思路:因为3个接口没有先后关系,所以完全可以并行执行,之后再做数据的整合,这样设计接口耗时肯定会节省很多

  使用CountDownLatch来实现以上优化思路

  CountDownLatch是什么:CountDownLatch是java.util.concurrent包下的类,它在多线程并发编程里充当这计数器的功能,通过构造函数维护一个int类型的初始值,如果一个线程调用await()方法,那么该线程就会进入阻塞状态,直到初始值变为0后,调用await()方法的阻塞线程将会被唤醒,执行后续操作,而通过countDown()这个方法,我们就能够实现初始值的减法,每调用一次,初始值减一。

  具体实现代码如下:

  public static void main(String[] args) throws Exception {

  CountDownLatch countDownLatch = new CountDownLatch(3);

  long startTime = new Date().getTime();

  //调用第一个电商平台的接口取得订单数,用时2s

  Thread thread1 = new Thread(() -> {

  try {

  Thread.sleep(2000);

  } catch (InterruptedException e) {

  }

  System.out.println("获取电商平台一的数据");

  countDownLatch.countDown();

  });

  //调用第二个电商平台的接口取得订单数,用时2s

  Thread thread2 = new Thread(() -> {

  try {

  Thread.sleep(2000);

  } catch (InterruptedException e) {

  }

  System.out.println("获取电商平台二的数据");

  countDownLatch.countDown();

  });

  //调用第二个电商平台的接口取得订单数,用时2s

  Thread thread3 = new Thread(() -> {

  try {

  Thread.sleep(2000);

  } catch (InterruptedException e) {

  }

  System.out.println("获取电商平台三的数据");

  countDownLatch.countDown();

  });

  thread1.start();

  thread2.start();

  thread3.start();

  countDownLatch.await();

  System.out.println("对三个电商平台的数据进行合并");

  long endTime = new Date().getTime();

  long time = endTime - startTime;

  System.out.println("总耗时" + time);

  }

  因为电商接口有3个,所以CountDownLatch的初始值设为3,之后多线程执行3个电商接口,每执行完一个,调用countDown()方法把初始值减一,同时主线程调用await()进入阻塞状态,直到初始值减为0,就被重新唤醒,开始执行数据的合并逻辑。

  执行效果如下:

  

CountDownLatch的简单应用和实现原理_第2张图片


  可以看到总耗时节省了约三分之二

  CountDownLatch的实现原理

  先看CountDownLatch的构造方法:

  public CountDownLatch(int count) {

  if (count < 0) throw new IllegalArgumentException("count < 0");

  this.sync = new Sync(count);

  }

  可以看到它除了做个初始值的异常判断外,实际上是构造了一个Sync的对象,赋值给自己的属性sync,那么看下Sync对象的源码:

  private static final class Sync extends AbstractQueuedSynchronizer {

  private static final long serialVersionUID = 4982264981922014374L;

  //Sync对象的构造方法

  Sync(int count) {

  setState(count);

  }

  }

  从以上源码可以看出,Sync对象继承了AQS,所以调用CountDownLatch的构造方法实际上就是调用Sync对象的构造方法,然后通过setState(count)方法设置AQS的state值。

  public abstract class AbstractQueuedSynchronizer

  extends AbstractOwnableSynchronizer

  implements java.io.Serializable {

  private volatile int state;

  protected final void setState(int newState) {

  state = newState;

  }

  }

  再看countDown()方法的实现:

  public void countDown() {

  sync.releaseShared(1);

  }

  实际上是调用了Sync对象的releaseShared()方法,参数固定为1

  public abstract class AbstractQueuedSynchronizer

  extends AbstractOwnableSynchronizer

  implements java.io.Serializable {

  public final boolean releaseShared(int arg) {

  if (tryReleaseShared(arg)) {

  doReleaseShared();

  return true;

  }

  return false;

  }

  //尝试释放共享模式的锁

  protected boolean tryReleaseShared(int arg) {

  throw new UnsupportedOperationException();

  }

  private void doReleaseShared() {

  for (;;) {

  Node h = head;

  if (h != null && h != tail) {

  int ws = h.waitStatus;

  if (ws == Node.SIGNAL) {

  if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))

  continue; // loop to recheck cases

  unparkSuccessor(h);

  }

  else if (ws == 0 &&

  !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))

  continue; // loop on failed CAS

  }

  if (h == head) // loop if head changed

  break;

  }

  }

  }

  其中方法tryReleaseShared()的具体实现是在CountDownLatch类,如下:

  public class CountDownLatch {

  protected boolean tryReleaseShared(int releases) {

  // Decrement count; signal when transition to zero

  for (;;) {

  int c = getState();

  if (c == 0)

  return false;

  int nextc = c-1;

  if (compareAndSetState(c, nextc))

  return nextc == 0;

  }

  }

  }

  //获取计数器的值

  protected final int getState() {

  return state;

  }

  }

  通过循环和compareAndSetState()方法我们可以看出这是一个自旋的CAS(Compare And Set)操作,先获取state的值,为0则返回false,否则执行减1操作,失败就重试,直到减为0,则返回true,之后执行doReleaseShared()方法

  await()方法的实现

  public class CountDownLatch {

  public void await() throws InterruptedException {

  sync.acquireSharedInterruptibly(1);

  }

  }

  可以看到await()实际是调用Sync对象的acquireSharedInterruptibly()方法:

  public abstract class AbstractQueuedSynchronizer

  extends AbstractOwnableSynchronizer

  implements java.io.Serializable {

  public final void acquireSharedInterruptibly(int arg)

  throws InterruptedException {

  if (Thread.interrupted())

  throw new InterruptedException();

  if (tryAcquireShared(arg) < 0)

  doAcquireSharedInterruptibly(arg);

  }

  private void doAcquireSharedInterruptibly(int arg)

  throws InterruptedException {

  final Node node = addWaiter(Node.SHARED);

  boolean failed = true;

  try {

  for (;;) {

  final Node p = node.predecessor();

  if (p == head) {

  int r = tryAcquireShared(arg);

  if (r >= 0) {

  setHeadAndPropagate(node, r);

  p.next = null; // help GC

  failed = false;

  return;

  }

  }

  if (shouldParkAfterFailedAcquire(p, node) &&

  parkAndCheckInterrupt())

  throw new InterruptedException();

  }

  } finally {

  if (failed)

  cancelAcquire(node);

  }

  }

  }

  其中tryAcquireShared()方法的具体实现是在CountDownLatch类:

  public class CountDownLatch {

  protected int tryAcquireShared(int acquires) {

  return (getState() == 0) ? 1 : -1;

  }

  }

  通过该方法可以判断出如果计数器值为0则返回1,否则返回-1,然后为0则会执行之后的方法,如果继续跟下去,最后会发现还是调用到了AQS的doReleaseShared()方法,所有阻塞的线程会被放开。

  CountDownLatch和.join()的使用区别

  CountDownLatch和.join()方法的作用其实很像,join()方法的使用可参考Java多线程中join()方法的使用,不过CountDownLatch使用起来会比join()方法更有灵活性。假设电商接口调用其实有两个步骤,在每个接口的第一步获取完数据后,还要做个数据记录,耗时也是2s,下面给出示例代码:

  使用join()方法:郑州人流多少钱 http://mobile.sgyy029.com/

  public static void main(String[] args) throws Exception {

  CountDownLatch countDownLatch = new CountDownLatch(3);

  long startTime = new Date().getTime();

  //调用第一个电商平台的接口取得订单数,用时2s

  Thread thread1 = new Thread(() -> {

  try {

  Thread.sleep(2000);

  } catch (InterruptedException e) {

  }

  System.out.println("获取电商平台一的数据");

  try {

  Thread.sleep(2000);

  } catch (InterruptedException e) {

  }

  System.out.println("获取电商平台一的数据后做个记录");

  });

  //调用第二个电商平台的接口取得订单数,用时2s

  Thread thread2 = new Thread(() -> {

  try {

  Thread.sleep(2000);

  } catch (InterruptedException e) {

  }

  System.out.println("获取电商平台二的数据");

  try {

  Thread.sleep(2000);

  } catch (InterruptedException e) {

  }

  System.out.println("获取电商平台二的数据后做个记录");

  });

  //调用第三个电商平台的接口取得订单数,用时2s

  Thread thread3 = new Thread(() -> {

  try {

  Thread.sleep(2000);

  } catch (InterruptedException e) {

  }

  System.out.println("获取电商平台三的数据");

  try {

  Thread.sleep(2000);

  } catch (InterruptedException e) {

  }

  System.out.println("获取电商平台三的数据后做个记录");

  });

  thread1.start();

  thread2.start();

  thread3.start();

  thread1.join();

  thread2.join();

  thread3.join();

  System.out.println("对三个电商平台的数据进行合并");

  long endTime = new Date().getTime();

  long time = endTime - startTime;

  System.out.println("总耗时" + time);

  }

  耗时效果如下:

  可以发现,使用join()方法,必须得等到每个线程都结束后才会接着执行之后的主线程,这样总耗时就会被数据记录的方法拖慢,达到4311ms

  使用CountDownLatch,在获取数据后就对初始值减1,而不是等到记录方法完成才减1,如下:

  public static void main(String[] args) throws Exception {

  CountDownLatch countDownLatch = new CountDownLatch(3);

  long startTime = new Date().getTime();

  //调用第一个电商平台的接口取得订单数,用时2s

  Thread thread1 = new Thread(() -> {

  try {

  Thread.sleep(2000);

  } catch (InterruptedException e) {

  }

  System.out.println("获取电商平台一的数据");

  countDownLatch.countDown();

  try {

  Thread.sleep(2000);

  } catch (InterruptedException e) {

  }

  System.out.println("获取电商平台一的数据后做个记录");

  });

  //调用第二个电商平台的接口取得订单数,用时2s

  Thread thread2 = new Thread(() -> {

  try {

  Thread.sleep(2000);

  } catch (InterruptedException e) {

  }

  System.out.println("获取电商平台二的数据");

  countDownLatch.countDown();

  try {

  Thread.sleep(2000);

  } catch (InterruptedException e) {

  }

  System.out.println("获取电商平台二的数据后做个记录");

  });

  //调用第二个电商平台的接口取得订单数,用时2s

  Thread thread3 = new Thread(() -> {

  try {

  Thread.sleep(2000);

  } catch (InterruptedException e) {

  }

  System.out.println("获取电商平台三的数据");

  countDownLatch.countDown();

  try {

  Thread.sleep(2000);

  } catch (InterruptedException e) {

  }

  System.out.println("获取电商平台三的数据后做个记录");

  });

  thread1.start();

  thread2.start();

  thread3.start();

  countDownLatch.await();

  System.out.println("对三个电商平台的数据进行合并");

  long endTime = new Date().getTime();

  long time = endTime - startTime;

  System.out.println("总耗时" + time);

  }

  耗时效果如下:

  可以发现耗时才2185ms

  以上就是CountDownLatch和join()方法的使用区别,相比起join()方法要等线程都执行完才会执行阻塞的线程,CountDownLatch就能够灵活控制阻塞线程的执行时机,耗时可以更少。