可持久化并查集、可撤销并查集

主要学习的blog/

整理下可持久化并查集要完成的内容:

1、将一个点的父亲(并查集那个fa)进行更改 (实际上是新增一个信息点)update。

2、查找某个时间点下一个pos对应的信息点编号。

3、查找一个点的父节点。

4、更新一个点的deep值,不用新写函数,可以用3号操作找到编号后++。

5、初始化build。

 

// #pragma GCC optimize(2)
// #pragma GCC optimize(3)
// #pragma GCC optimize(4)
#include 
#include  
#include  
#include   
#include   
#include   
#include    
#include    
#include    
#include    <string>
#include    
#include     
#include     
#include     
#include      
#include       
#include       <set>
#include   
#include 
// #include
// using namespace __gnu_pbds;
using namespace std;
#define pb push_back
#define fi first
#define se second
#define debug(x) cerr<<#x << " := " << x << endl;
#define bug cerr<<"-----------------------"<#define FOR(a, b, c) for(int a = b; a <= c; ++ a)

typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair pll;

const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f;
const int mod = 998244353;

template
inline T read(T&x){
    x=0;int f=0;char ch=getchar();
    while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar();
    while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x=f?-x:x;
}
/**********showtime************/

            int n,m;
            const int maxn = 2e5+9;
            int tr[maxn];
            struct T{
                int l,r;
            }tree[maxn * 30];
            int fa[maxn * 30], dp[maxn * 30];
            int tot = 0;
            void build(int & rt, int le, int ri) {
                rt = ++tot;
                if(le == ri) {
                    fa[rt] = le;
                    dp[rt] = 1;
                    return;
                }
                int mid = (le + ri) >> 1;
                build(tree[rt].l, le, mid);
                build(tree[rt].r, mid+1, ri);
            }

            void update(int last, int &rt, int le, int ri, int pos, int ff) {
                rt = ++tot;
                if(le == ri) {
                    fa[rt] = ff;
                    dp[rt] = dp[last];
                    return;
                }
                int mid = (le + ri) >> 1;
                tree[rt] = tree[last];
                if(mid >= pos) update(tree[last].l, tree[rt].l, le, mid, pos, ff);
                else update(tree[last].r, tree[rt].r, mid+1, ri, pos, ff);
            }

            int query(int rt, int le, int ri, int pos) {
                if(le == ri) return rt;
                int mid = (le + ri) >> 1;
                if(mid >= pos) return query(tree[rt].l, le, mid, pos);
                else return query(tree[rt].r, mid+1, ri, pos);
            }

            int findfa(int rt, int pos) {
                int x = query(rt, 1, n, pos);
                if(fa[x] == pos) return x;
                return findfa(rt, fa[x]);
            }
//            void adddeep()
int main(){
            scanf("%d%d", &n, &m);
            build(tr[0], 1, n);
            for(int i=1; i<=m; i++) {
                int op; scanf("%d", &op);
                tr[i] = tr[i-1];
                if(op == 1) {
                    int u,v;
                    scanf("%d%d", &u, &v);
                    int fu = findfa(tr[i], u);
                    int fv = findfa(tr[i], v);
                    if(fa[fu] == fa[fv]) {continue;}
                    if(dp[fu] > dp[fv]) swap(fu, fv);
                    update(tr[i-1], tr[i], 1, n, fa[fu], fa[fv]);

                    if(dp[fu] == dp[fv]) {
                        dp[fv] ++;
                    }
                }
                else if(op == 2) {
                    int k;  scanf("%d", &k);
                    tr[i] = tr[k];
                }
                else {
                    int u,v;
                    scanf("%d%d", &u, &v);
                    int fu = findfa(tr[i], u);
                    int fv = findfa(tr[i], v);
//                    cout<
                    if(fa[fu] == fa[fv]) puts("1");
                    else puts("0");
                }
            }
            return 0;
}
View Code

 

下面再附上一个可撤销并查集的模板

/// 可撤回并查集模板
struct UFS {
    stackint*, int>> stk;
    int fa[N], rnk[N];
    inline void init(int n) {
        for (int i = 0; i <= n; ++i) fa[i] = i, rnk[i] = 0;
    }
    inline int Find(int x) {
        while(x^fa[x]) x = fa[x];
        return x;
    }
    inline void Merge(int x, int y) {
        x = Find(x), y = Find(y);
        if(x == y) return ;
        if(rnk[x] <= rnk[y]) {
            stk.push({fa+x, fa[x]});
            fa[x] = y;
            if(rnk[x] == rnk[y]) {
                stk.push({rnk+y, rnk[y]});
                rnk[y]++;
            }
        }
        else {
            stk.push({fa+y, fa[y]});
            fa[y] = x;
        }
    }
    inline void Undo() {
        *stk.top().fi = stk.top().se;
        stk.pop();
    }
}T;
View Code

 

你可能感兴趣的:(可持久化并查集、可撤销并查集)