2019dx#9

 

Solved Pro.ID Title Ratio(Accepted / Submitted)
  1001 Rikka with Quicksort 25.85%(38/147)
  1002 Rikka with Cake 31.69%(379/1196)
  1003 Rikka with Mista 5.57%(45/808)
  1004 Rikka with Geometric Sequence 9.52%(2/21)
  1005 Rikka with Game 35.29%(866/2454)
  1006 Rikka with Coin 7.16%(358/5003)
  1007 Rikka with Travels 21.46%(85/396)
  1008 Rikka with Stable Marriage       字典树+贪心 17.02%(8/47)
  1009 Rikka with Traffic Light 0.00%(0/24)
  1010 Rikka with Defensive Line 0.00%(0/20)
  1011 Rikka with Segment Tree 39.39%(13/33)

1007 Rikka with Travels

思路:

一棵树上最长链处理,分出两种情况,一种是(a,b)各占一个端点,还有一种情况a占整条链,b是全踩在非最长链。

#include 
#include  
#include  
#include   
#include   
#include   
#include    
#include    
#include    
#include    <string>
#include    
#include     
#include     
#include     
#include      
#include       
#include       <set>
#include   
#include 
// #include
// using namespace __gnu_pbds;
using namespace std;
#define pb push_back
#define fi first
#define se second
#define debug(x) cerr<<#x << " := " << x << endl;
#define bug cerr<<"-----------------------"<#define FOR(a, b, c) for(int a = b; a <= c; ++ a)

typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair pll;

const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f;
const int mod = 998244353;

template
inline T read(T&x){
    x=0;int f=0;char ch=getchar();
    while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar();
    while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x=f?-x:x;
}
/**********showtime************/
            const int maxn = 1e5+9;
            int n;
            vector<int>mp[maxn];
            int vis[maxn];
            int dis[maxn];
            vector<int>lian;
            ///扣出最长链
            void koulian() {
                for(int i=1; i<=n; i++) dis[i] = inf;
                dis[1] = 0;
                queue<int>que;  que.push(1);
                int t = 1;
                while(!que.empty()) {
                    int u = que.front(); que.pop();
                    if(dis[u] > dis[t])t = u;
                    for(int v : mp[u]) {
                        if(dis[v] > dis[u] + 1) {
                            dis[v] = dis[u] + 1;
                            que.push(v);
                        }
                    }
                }

                for(int i=1; i<=n; i++) dis[i] = inf;
                dis[t] = 0;
                que.push(t);
                int s = t;
                while(!que.empty()) {
                    int u = que.front(); que.pop();
                    if(dis[u] > dis[s])s = u;
                    for(int v:mp[u]) {
                        if(dis[v] > dis[u] + 1) {
                            dis[v] = dis[u] + 1;
                            que.push(v);
                        }
                    }
                }
                lian.pb(s);
                vis[s] = 1;
                while(s != t) {
                    for(int v : mp[s]) {
                        if(dis[v] +1 == dis[s]) {
                            s = v;
                            lian.pb(s);
                            vis[s] = 1;
                            break;
                        }
                    }
                }
            }

            int dpa[maxn], dpb[maxn][2], pre[maxn];
            int dppre[maxn], dpback[maxn];
            ///求出以最长链上一个点为根节点的不经过最长链的最大深度
            void dfs1(int u, int fa) {
                dpa[u] = 1;
                for(int v : mp[u]) {
                    if(v == fa || vis[v]) continue;
                    dfs1(v, u);
                    dpa[u] = max(dpa[u], dpa[v] + 1);
                }}
            void dfs2(int u, int fa) {
                dpb[u][0] = dpb[u][1] = 1;
                ///dpb[0]表示包含根节点的最长链
                ///dpb[1]表示包含根节点的次长链
                pre[u] = 1;
                for(int v : mp[u]) {
                    if(vis[v] || v == fa) continue;
                    dfs2(v, u);
                    pre[u] = max(pre[u], pre[v]);

                    if(dpb[u][1] <= dpb[v][0] + 1){
                        dpb[u][1] = dpb[v][0] + 1;
                        if(dpb[u][0] < dpb[u][1]) {
                            swap(dpb[u][0], dpb[u][1]);
                        }
                    }
                }
                pre[u] = max(pre[u], dpb[u][0] + dpb[u][1] - 1);
            }
            int hei[maxn];
int main(){
            int T;  scanf("%d", &T);
            while(T--){
                scanf("%d", &n);
                for(int i=1; i) {
                    int u, v;
                    scanf("%d%d", &u, &v);
                    mp[u].pb(v);
                    mp[v].pb(u);
                }
                for(int i=0; i<=n; i++) vis[i] = 0, hei[i] = 0, pre[i] = 0, dppre[i] = 0,dpback[i] = 0;

                koulian();
                for(int i=0; i) {
                    int v = lian[i];
                    dfs1(v, v);
                    if(i)dppre[i] =  max(dppre[i-1], dpa[v] + i);
                    else dppre[i] = dpa[v];
                    for(int p : mp[v]) {
                        if(vis[p]) continue;
                        dfs2(p, p);
                        pre[v] = max(pre[v], pre[p]);
                    }
                    pre[v] = max(pre[v], pre[lian[max(0, i-1)]]);
                }
                int cc = 0;
                for(int i=lian.size()-1; i>=0; i--) {
                    if(i == lian.size() - 1) dpback[i] = dpa[lian[i]];
                    else dpback[i] = max(dpback[i+1], dpa[lian[i]] + cc);
                    cc++;
                }
                int all = lian.size();
                hei[all] = pre[lian[all-1]];
                hei[pre[lian[all-1]]] = all;

                for(int i=lian.size() - 1; i>=1; i--) {
                    int v = lian[i];
                    int a = dppre[i-1];
                    int b = dpback[i];
                    hei[a] = max(hei[a], b);
                    hei[b] = max(hei[b], a);
                }
                ll sum = 0;
                int c = 0;

                for(int i=all; i>=1; i--) {
                    c = max(c, hei[i]);
                    sum = sum + c;
                }
                printf("%lld\n", sum);
                lian.clear();
                for(int i=1; i<=n; i++) mp[i].clear();
            }
            return 0;
}
/*
10
9
1 2
2 3
3 4
4 5
5 8
3 6
3 7
7 9


14
1 2
2 3
3 4
4 5
5 6
6 7
3 8
3 9
4 10
4 11
11 14
5 12
5 13
 = 36
*/
View Code

 

1008 Rikka with Stable Marriage   

思路:

就是字典树+贪心,和第五场那个贪心顺序反一下就行了

// #pragma GCC optimize(2)
// #pragma GCC optimize(3)
// #pragma GCC optimize(4)
#include 
#include  
#include  
#include   
#include   
#include   
#include    
#include    
#include    
#include    <string>
#include    
#include     
#include     
#include     
#include      
#include       
#include       <set>
#include   
// #include
// using namespace __gnu_pbds;
using namespace std;
#define pb push_back
#define fi first
#define se second
#define debug(x) cerr<<#x << " := " << x << endl;
#define bug cerr<<"-----------------------"<#define FOR(a, b, c) for(int a = b; a <= c; ++ a)

typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair pll;

const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f;
const int mod = 998244353;

template
inline T read(T&x){
    x=0;int f=0;char ch=getchar();
    while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar();
    while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x=f?-x:x;
}

/**********showtime************/
            const int maxn = 1e5+9;
            int a[maxn],b[maxn];
            int tot[2],rt[2];
            int bz[33];
            struct node{
                int ch[2];
                int fa;
                int sz;
                void init(int f) {
                    ch[0] = ch[1] = 0;
                    fa = f;
                    sz = 0;
                }
            }tree[2][maxn * 30];
            int shu[35];

            void add(int p, int len, int flag) {
                if(len == 0){
                    tree[flag][p].sz++;
                    return;
                }

                if(tree[flag][p].ch[shu[len]] == 0)
                {
                    tree[flag][p].ch[shu[len]] = ++ tot[flag];
                    tree[flag][tot[flag]].init(p);
                }
                int nx = tree[flag][p].ch[shu[len]];
                add(nx, len-1, flag);
                int lc = tree[flag][p].ch[0];
                int rc = tree[flag][p].ch[1];
                tree[flag][p].sz = tree[flag][lc].sz + tree[flag][rc].sz;
            }
            void insert(int val, int flag) {
                int len = 0;
                for(int i=0; i<=30; i++) shu[++len] = val % 2, val /= 2;
                add(rt[flag], 30, flag);
            }
            void display(int rt, int flag) {
                if(rt == 0) return ;
//                cout<
                display(tree[flag][rt].ch[0], flag);
                display(tree[flag][rt].ch[1], flag);
            }
            vector<int>vec;
            void find(int a, int b, int cen, int val) {
                if(cen == 0) {
                    vec.pb(val);
                    tree[0][a].sz--;
                    tree[1][b].sz--;
                    return;
                }
                if(tree[0][tree[0][a].ch[0]].sz && tree[1][ tree[1][b].ch[1]].sz){
                    find(tree[0][a].ch[0], tree[1][b].ch[1], cen-1, val + bz[cen-1]);
                }
                else if(tree[0][tree[0][a].ch[1]].sz && tree[1][ tree[1][b].ch[0]].sz){
                    find(tree[0][a].ch[1], tree[1][b].ch[0], cen-1, val + bz[cen-1]);
                }
                else if(tree[0][ tree[0][a].ch[0] ].sz && tree[1][ tree[1][b].ch[0]].sz ) {
                    find(tree[0][a].ch[0], tree[1][b].ch[0], cen-1, val);
                }
                else if(tree[0][ tree[0][a].ch[1] ].sz && tree[1][ tree[1][b].ch[1]].sz) {
                    find(tree[0][a].ch[1], tree[1][b].ch[1], cen-1, val);
                }

                tree[0][a].sz = tree[0][tree[0][a].ch[0]].sz + tree[0][tree[0][a].ch[1]].sz;
                tree[1][b].sz = tree[1][tree[1][b].ch[0]].sz + tree[1][tree[1][b].ch[1]].sz;

            }
int main(){
            int T;  scanf("%d", &T);
            bz[0] = 1;
            for(int i=1; i<=30; i++) bz[i] = 2 * bz[i-1];
            while(T--) {
                tot[0] = tot[1] = 0;
                rt[0] = ++tot[0];
                tree[0][rt[0]].init(0);
                rt[1] = ++tot[1];
                tree[1][rt[1]].init(0);

                int n;  scanf("%d", &n);
                for(int i=1; i<=n; i++) scanf("%d", &a[i]), insert(a[i], 0);
                for(int i=1; i<=n; i++) scanf("%d", &b[i]), insert(b[i], 1);

                vec.clear();
                for(int i=1; i<=n; i++) {
                    find(rt[0], rt[1], 30, 0);
                }
                ll sum = 0;
                for(int i=0; i vec[i];
                printf("%lld\n", sum);
            }
            return 0;
}
View Code

 

你可能感兴趣的:(2019dx#9)