- 《探秘人工智能与鸿蒙系统集成开发的硬件基石》
程序猿阿伟
人工智能harmonyos华为
在科技飞速发展的当下,人工智能与鸿蒙系统的集成开发开辟了创新的前沿领域。这一融合不仅代表着技术的演进,更预示着智能设备生态的全新变革。而在这场技术盛宴的背后,坚实的硬件配置是确保开发顺利进行的关键,它就像一座大厦的基石,决定了上层建筑的高度和稳定性。处理器:运算核心的澎湃动力处理器作为硬件系统的核心,在人工智能与鸿蒙系统集成开发中扮演着至关重要的角色。对于模型训练任务,尤其是深度学习模型,其复杂的
- 数据标注工具及其对预训练模型性能的影响
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1预训练模型的崛起近年来,预训练模型(Pre-trainedModels)在自然语言处理(NLP)领域取得了显著的成功。这些模型通过在大规模无标注文本数据集上进行预训练,学习到丰富的语言知识和语义表示,并在下游任务中展现出优异的性能。BERT、GPT-3等预训练模型的出现,标志着NLP领域进入了一个新的时代。1.2数据标注的重要性尽管预训练模型展现出强大的能力,但它们仍然需要针对特
- 数据标注质量对AI模型质量的影响分析
自由鬼
行业发展IT应用探讨人工智能机器学习深度学习AI
上、数据标注质量与AI模型的质量关系数据标注是AI最基础的工作,数据标注的质量决定了AI质量,影响数据标注质量的是数据标注的规则。1、数据标注是AI最基础的工作:数据标注是构建高质量AI模型的基石:数据标注尤其是在监督学习范式下,是AI领域最基础、最关键的工作之一。没有高质量的标注数据,就如同建造高楼大厦没有坚实的地基,AI模型就无法有效地学习和训练,最终的AI质量也就无从谈起。训练数据是AI模型
- 基于纯视觉的 GUI 代理的屏幕解析工具(OmniParser)
deepdata_cn
应用软件GUI
OmniParser是一款开源工具,可通过解析用户界面截图生成结构化数据,助力打造视觉驱动的GUI自动化代理,赋能跨平台交互。一、技术原理1.数据集构建:从流行网页和应用中提取数据,构建可交互图标检测数据集和图标描述数据集,为模型训练提供基础。2.检测模型:使用YOLOv8模型在可交互图标检测数据集上进行微调,能够识别和定位用户界面中的可交互区域,如按钮、图标等。3.描述模型:利用BLIP-v2模
- Anthropic 的模型
调皮的芋头
深度学习神经网络机器学习人工智能
Anthropic的模型(特别是Claude系列)之所以在性能和推理能力上表现强劲,可以从技术设计、研究理念、训练方法以及应用优化等多个方面进行详细分析。以下是基于当前信息(截至2025年3月13日)和行业趋势的深入剖析:1.技术设计与安全导向Anthropic由前OpenAI研究员创立,核心理念是将安全性、可解释性和可控性融入模型设计。这种设计哲学直接影响了Claude模型的性能:Constit
- RV1126笔记三十七:PaddleOCR检测模型训练
殷忆枫
RV1126项目实战笔记
若该文为原创文章,转载请注明原文出处。PaddleOCR检测模型训练及验证测试1、准备数据集在PaddleOCR目录下新建文件夹:train_data,这个文件夹用于存放数据集的。使用的是网上大佬提供的车牌识别数据集,下载后,解压到train_data目录下。可以自己网上找,了可以找我要数据集,或自己标注数据集。2、配置文件在PaddleOCR主目录下:configs/det/ch_ppocr_v
- 大语言模型微调和大语言模型应用的区别?
AI Echoes
深度学习人工智能机器学习
1.基本概念微调(Fine-tuning)定义:微调是指在预训练大语言模型的基础上,通过在特定领域或任务的数据上进一步训练,从而使模型在该特定任务上表现更优。目的:适应具体的任务需求,比如法律文书写作、医疗问答、金融分析等,使得模型能更好地理解和生成符合领域要求的内容。过程:通常涉及准备领域特定的数据集、设计合适的损失函数、调整超参数(例如学习率、批量大小等),以及选择冻结或解冻部分参数来更新模型
- 大语言模型(LLMs)全面学习指南(非常详细)零基础入门到精通,收藏这一篇就够了
网络安全大白
科技程序员人工智能语言模型人工智能自然语言处理
大语言模型(LLMs)作为人工智能(AI)领域的一项突破性发展,已经改变了自然语言处理(NLP)和机器学习(ML)应用的面貌。这些模型,包括OpenAI的GPT-4o和Google的gemini系列等,已经展现出了在理解和生成类人文本方面的令人印象深刻的能力,使它们成为各行各业的宝贵工具。如下这份指南将涵盖LLMs的基础知识、训练过程、用例和未来趋势……一.WhatareLargeLanguage
- DeepSeek创始人专访:中国的AI不可能永远跟随,需要有人站到技术的前沿
AIBigModel
人工智能
来源:暗涌Waves,整理:FounderPark因为V3版本开源模型的发布,DeepSeek又火了一把,而且这一次,是外网刷屏。训练成本估计只有Llama3.1405B模型的11分之一,后者的效果还不如它。在多项测评上,DeepSeekV3达到了开源SOTA,超越Llama3.1405B,能和GPT-4o、Claude3.5Sonnet等TOP模型正面掰掰手腕——而其价格比Claude3.5Ha
- 十分钟学会微调大语言模型
喝不喝奶茶丫
语言模型人工智能自然语言处理大模型大模型应用AI大模型微调
在之前的文章中,我分享了一些使用大语言模型开发应用的方法,也介绍了几个开源大语言模型的部署方式,有同学给我留言说想知道怎么训练自己的大语言模型,让它更贴合自己的业务场景。完整的大语言模型训练成本比较高昂,不是我们业余玩家能搞的,如果我们只是想在某个业务场景或者垂直的方面加强大模型的能力,可以进行微调训练。本文就来介绍一种大语言模型微调的方法,使用的工具是我最近在用的TextGenerationWe
- 大语言模型微调和大语言模型应用的区别?
AI Echoes
人工智能深度学习机器学习
大语言模型微调和大语言模型应用的区别?1.定义与目标微调(Fine-tuning)目标:调整预训练模型(如GPT、LLaMA、PaLM)的参数,使其适应特定任务或领域。核心:通过额外的训练(使用特定数据集)优化模型的性能,提升其在特定场景下的效果。例如:将通用模型微调为法律咨询、医疗诊断或金融分析的专业模型。应用(Application)目标:直接使用预训练或微调后的模型解决实际问题,无需修改模型
- 神经网络完成训练的详细过程
每天五分钟玩转人工智能
神经网络人工智能深度学习pytorch机器学习优化算法包括梯度下降法
神经网络完成训练的详细过程一、神经网络的基本概念神经网络是一种模拟人脑神经系统的计算模型,由大量的神经元(节点)和它们之间的连接(权重)组成。神经元接收输入信号,通过加权求和和激活函数的处理,产生输出信号。这些输出信号又可以作为其他神经元的输入,从而形成一个复杂的网络结构。神经网络的训练过程就是调整这些权重和偏置(每个神经元除了有权重外,还有一个偏置项,用于调整输出的阈值),使得网络的输出能够尽可
- pytorch实现cifar10多分类总结
L_pyu
人工智能pytorch分类
cifar-10简介:CIFAR-10是一个常用的图像分类数据集,每张图片都是3×32×32,3通道彩色图片,分辨率32×32。它包含了10个不同类别,每个类别有6000张图像,其中5000张用于训练,1000张用于测试。这10个类别分别为:飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车。CIFAR-10分类任务是将这些图像正确地分类到它们所属的类别中。对于这个任务,可以使用深度学习模型,如卷积
- 多分类—微调DistilBERT对生物医学文本进行实验方法多分类:Automated Text Mining of Experimental Methodologies from Biomedical
小小帅AIGC
informationextraction人工智能自然语言处理语言模型多分类学术领域生物医学
AutomatedTextMiningofExperimentalMethodologiesfromBiomedicalLiterature从生物医学文献中自动挖掘实验方法文本paper:https://arxiv.org/abs/2404.13779github:本文做的就是微调DistilBERT去做多分类任务,训练自己的数据集,分类每个句子对应的实验方法。没有什么讲的。文章目录~1.背景动机
- 数据挖掘技术介绍
柒柒钏
数据挖掘数据挖掘人工智能
数据挖掘技术介绍分类聚类关联规则挖掘预测异常检测特征选择与降维文本挖掘序列模式挖掘深度学习集成学习数据挖掘(DataMining)是一种从大量数据中提取有用信息和模式的技术,旨在从数据中发现隐藏的规律、趋势或关系,从而为决策提供支持。分类定义:是一种监督学习方法,用于将数据分为不同的类别。功能:根据已标记的训练数据,学习一个模型,用于预测新数据的类别。方法:决策树、支持向量机、神经网络、逻辑回归、
- 图神经网络学习笔记—高级小批量处理(专题十四)
AI专题精讲
图神经网络入门到精通人工智能
小批量(mini-batch)的创建对于让深度学习模型的训练扩展到海量数据至关重要。与逐条处理样本不同,小批量将一组样本组合成一个统一的表示形式,从而可以高效地并行处理。在图像或语言领域,这一过程通常通过将每个样本缩放或填充为相同大小的形状来实现,然后将样本在一个额外的维度中分组。该维度的长度等于小批量中分组的样本数量,通常称为batch_size。由于图是能够容纳任意数量节点或边的最通用的数据结
- 医学文本分析中的命名实体识别:从理论到实践
软件职业规划
语言模型unity人工智能
1.数据预处理数据预处理是医学命名实体识别系统的基础步骤,其质量直接影响模型的训练效果和最终性能。数据预处理主要包括医学文本的标注、清洗以及数据增强三个方面。1.1医学文本的标注标注是数据预处理中的关键环节,其目的是将医学文本中的实体明确标记出来,以便模型能够学习到实体的特征和边界。标注的方式通常采用BIO标注法。1.1.1BIO标注法BIO标注法是一种广泛应用于命名实体识别任务的标注方式,它通过
- Deepseek:物理神经网络PINN入门教程
天一生水water
神经网络人工智能深度学习
一、物理信息网络(PINN)的概念与原理1.定义与来源物理信息网络(Physics-InformedNeuralNetworks,PINN)是一种将物理定律(如偏微分方程、守恒定律等)嵌入神经网络训练过程的深度学习方法。其核心思想是通过神经网络同时拟合观测数据并满足物理约束,从而解决传统数值方法难以处理的高维、噪声数据或复杂边界条件问题。来源:PINN起源于对传统数值方法局限性的改进需求(如网格生
- 基于Transformer的医学文本分类:从BERT到BioBERT
Evaporator Core
人工智能#深度学习#DeepSeek快速入门transformer分类bert
随着自然语言处理(NLP)技术的快速发展,Transformer模型在文本分类、情感分析、机器翻译等任务中取得了显著成果。在医学领域,文本数据(如电子病历、医学文献、临床报告)具有高度的专业性和复杂性,传统的NLP方法往往难以处理。Transformer模型,尤其是BERT及其变体,通过预训练和微调的方式,能够有效捕捉医学文本中的语义信息,为医学文本分类提供了强大的工具。本文将探讨Transfor
- H100解锁生成式AI算力新纪元
智能计算研究中心
其他
内容概要英伟达H100GPU以Hopper架构为核心,重新定义了生成式AI的算力边界。其创新性设计聚焦三大技术支柱:第三代TensorCore通过稀疏计算与混合精度支持,显著提升矩阵运算效率;显存带宽优化技术结合HBM3高带宽内存,将数据吞吐量提升至3.35TB/s,有效缓解大规模模型训练中的显存墙问题;动态编程加速器则针对AI工作负载特征实现指令级优化。这些突破使H100在生成式AI训练中实现高
- Batch Normalization理解
zhimengxiang
图像处理人工智能图像处理
BatchNormalization理解BatchNormalization:批归一化我们在图像预处理过程中通常会对图像进行标准化处理,这样能够加速网络的收敛,如下图所示,对于Conv1来说输入的就是满足某一分布的特征矩阵,但对于Conv2而言输入的featuremap就不一定满足某一分布规律了(注意这里所说满足某一分布规律并不是指某一个featuremap的数据要满足分布规律,理论上是指整个训练
- 深度学习项目--基于DenseNet网络的“乳腺癌图像识别”,准确率90%+,pytorch复现
羊小猪~~
深度学习网络pytorch人工智能python机器学习分类
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊前言如果说最经典的神经网络,ResNet肯定是一个,从ResNet发布后,很多人做了修改,denseNet网络无疑是最成功的一个,它采用密集型连接,将通道数连接在一起;本文是基于上一篇复现DenseNet121模型,做一个乳腺癌图像识别,效果还行,准确率0.9+;CNN经典网络之“DenseNet”简介,源码研究与复现(pytorch):
- 从零到一:Transformer模型的原理与实战之旅
樽酒ﻬق
AItransformer深度学习人工智能
目录从零到一:Transformer模型的原理与实战之旅1.Transformer原理简介1.1什么是Transformer?1.2自注意力机制的核心1.3Transformer的结构2.实战:构建Transformer模型2.1任务目标2.2环境准备2.3数据准备2.4模型构建2.5模型训练3.推理实战:完整示例与输出结果3.1完整推理代码3.2代码解析4.原理与代码的结合4.1自注意力机制的实
- PyTorch 深度学习实战(13):Proximal Policy Optimization (PPO) 算法
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们介绍了Actor-Critic算法,并使用它解决了CartPole问题。本文将深入探讨ProximalPolicyOptimization(PPO)算法,这是一种更稳定、更高效的策略优化方法。我们将使用PyTorch实现PPO算法,并应用于经典的CartPole问题。一、PPO算法基础PPO是OpenAI提出的一种强化学习算法,旨在解决策略梯度方法中的训练不稳定问题。PPO通过
- 笔记:代码随想录算法训练营day39:LeetCode 198.打家劫舍,213.打家劫舍II,337.打家劫舍III
jingjingjing1111
笔记leetcode算法数据结构动态规划
学习资料:代码随想录198.打家劫舍力扣题目链接思路:有点像贪心,是一个不断比较取最大路径的思路定义:偷到下标为i的这家,能偷到的最大值递推公式:选当前这家偷能得到的钱和不偷当前这家的钱作比较,选能偷到的最大金额。因为这个金额是逐一递推过来的,所以是能够代表最大值的。初始化:把第一家和第二家初始化,简单来说,因为递推公式需要i-1和i-2遍历顺序:顺着偷打印://五部曲//定义:dp[i]为偷到第
- 【大模型LLM面试合集】分布式训练_总结
X.AI666
大模型LLM面试合集面试分布式人工智能语言模型
9.总结1.数据并行数据并行,由于其原理相对比较简单,是目前使用最广泛的分布式并行技术。数据并行不仅仅指对训练的数据并行操作,还可以对网络模型梯度、权重参数、优化器状态等数据进行并行。我们首先以PyTorch数据并行的发展(DataParallel、DistributedDataParallel、FullyShardedDataParallel)为主线进行讲述了数据并行的技术原理。同时,也简述了D
- 2025年渗透测试面试题总结-阿里巴巴-阿里云安全(二面)(题目+回答)
独行soc
2025年渗透测试面试指南科技安全web安全面试职场和发展红蓝攻防阿里云
网络安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。目录阿里巴巴-阿里云安全二面一、职业方向与技术偏好1.安全研究vs安全研发的定位二、云安全与身份认证2.云上PKI与身份认证的关注方向三、项目实践与成果3.字节跳动训练营项目四、攻防技术深度解析4.SQL注入攻防方案5.WAF防护原理五、团队协作与效能优化6.分工协作与个
- KNN算法实例_手写识别系统
V文宝
机器学习算法
创建一个简单的书写识别系统,使用KNN算法来识别手写数字。分别使用手写KNN算法和调用scikit-learn库来实现。在数据处理过程中,将使用一个常见的手写数字数据集,如MNIST数据集。数据集我们将使用MNIST数据集,它包含60000个训练样本和10000个测试样本。每个样本是一个28x28像素的灰度图像,表示0-9之间的手写数字。手写KNN算法我们首先手写一个KNN算法来实现书写识别系统。
- 大模型高效优化技术全景解析:微调、量化、剪枝、梯度裁剪与蒸馏
时光旅人01号
人工智能剪枝算法深度学习数据挖掘人工智能
目录微调(Fine-tuning)量化(Quantization)剪枝(Pruning)梯度裁剪(GradientClipping)知识蒸馏(KnowledgeDistillation)技术对比与协同策略总结与趋势1.微调(Fine-tuning)核心思想在预训练模型(如BERT、GPT)基础上,通过领域数据调整参数,适配下游任务。方法流程预训练模型加载:加载通用模型权重(如HuggingFace
- 推理大模型:技术解析与未来趋势全景
时光旅人01号
深度学习人工智能pythonpytorch神经网络
1.推理大模型的定义推理大模型(ReasoningLLMs)是专门针对复杂多步推理任务优化的大型语言模型,具备以下核心特性:输出形式创新展示完整逻辑链条(如公式推导、多阶段分析)任务类型聚焦擅长数学证明、编程挑战、多模态谜题等深度逻辑任务训练方法升级融合强化学习、思维链(CoT)、测试时计算扩展等技术2.主流推理大模型图谱2.1国际前沿模型OpenAIo1系列内部生成"思维链"机制数学/代码能力标
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep