Tensorflow.TensorBoard.2.MNIST

参考内容:
非常详细的TensorBoard基本解释及使用简介
TensorFlow学习笔记(6):TensorBoard之Embeddings
【Python | TensorBoard】用 PCA 可视化 MNIST 手写数字识别数据集
** TensorFlow-7-TensorBoard Embedding可视化**
在线示例


在查看Embedding时,遇到如下问题:
Error: Your browser or device does not have WebGL enabled. Please enable hardware acceleration, or use a browser that supports WebGL.

Tensorflow.TensorBoard.2.MNIST_第1张图片
error

  1. 首先尝试设置firefox:
    在地址栏输入about:config
    找到webgl.disable设置为false
    找到webgl.force-enable设置为True
    但设置完后刷新页面,仍提示相同错误,因此尝试方法2。
  2. 通过主机Chrome浏览器访问VB虚拟机提供的Web页面:
    首先设置VB网络如下所示,访问方式为NAT,点击端口转发添加一条规则。其中 主机IP 169.254.155.25是在主机系统中通过查看网络连接详细信息得到的VB IP地址,主机端口 定义为想要通过浏览器访问的端口; 子系统IP 是在VB的Ubuntu中显示的IP地址, 子系统端口 是tensorboard中设置的访问端口。确认后,允许防火墙所提示的信息即可。
    Tensorflow.TensorBoard.2.MNIST_第2张图片
    VB网络设置

在主机Chrome浏览器中输入http://169.254.155.25:8081/#embeddings,即可查看embeddings信息。



PLUS:一些参数的Embedding

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import sys
import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.contrib.tensorboard.plugins import projector
import numpy as np

FLAGS = None

def train():
    # Import data
    mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True, fake_data=FLAGS.fake_data)
    sess = tf.InteractiveSession()


    # 1)
    # # Create randomly initialized embedding weights which will be trained.
    # D = 200  # Dimensionality of the embedding.
    # embedding_var = tf.Variable(tf.random_normal([N, D]), name='word_embedding')
    N = 10000  # Number of items (vocab size).
    plot_array = mnist.test.images[:N]  # shape: (n_observations, n_features)
    np.savetxt(os.path.join(FLAGS.log_dir, 'metadata.tsv'), mnist.test.labels[:N], fmt='%d')
    embedding_var = tf.Variable(plot_array, name='word_embedding')

    # Create a multilayer model

    # Input placeholders
    with tf.name_scope('input'):
        y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')

        x = tf.placeholder(tf.float32, [None, 784], name='x-input')

    with tf.name_scope('input_reshape'):
        image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
        tf.summary.image('input', image_shaped_input, 10)

    # We can't initialize these variables yo 0 - the network will get stuck
    def weight_variable(shape):
        """Create a weight variable with appropriate initialization."""
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)

    def bias_variable(shape):
        """Create a bias variable with appropriate initialization."""
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)

    def variable_summaries(var):
        """Attach a lot of summaries to a tensor (for TensorBoard visualization)."""
        with tf.name_scope('summaries'):
            mean = tf.reduce_mean(var)
            tf.summary.scalar('mean', mean)
            with tf.name_scope('stddev'):
                stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
            tf.summary.scalar('stddev', stddev)
            tf.summary.scalar('max', tf.reduce_max(var))
            tf.summary.scalar('min', tf.reduce_min(var))
            tf.summary.histogram('histogram', var)

    def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
        """Reusable code for making a simple neural net layer.

        It does a matrix multiply, bias add, and then uses ReLU to nonlinearize.
        It also sets up name scoping so that the resultant graph is easy to read,
        and adds a number of summary ops.
        """
        # Adding a name scope ensure logical grouping of grouping of the layers in the graph.
        with tf.name_scope(layer_name):
            # This Variable will hold the state of the weights for layer
            with tf.name_scope('weights'):
                weights = weight_variable([input_dim, output_dim])
                variable_summaries(weights)
            with tf.name_scope('biases'):
                biases = bias_variable([output_dim])
                variable_summaries(biases)
            with tf.name_scope('Wx_plus_b'):
                preactivate = tf.matmul(input_tensor, weights) + biases
                tf.summary.histogram('pre_ativations', preactivate)
            activations = act(preactivate, name='activation')
            tf.summary.histogram('activations', activations)
            return activations

    hidden1 = nn_layer(x, 784, 500, 'layer1')

    with tf.name_scope('dropout'):
        keep_prob = tf.placeholder(tf.float32)
        tf.summary.scalar('dropout_keep_probalility', keep_prob)
        dropped = tf.nn.dropout(hidden1, keep_prob)

    # Do not apply softmax activation yet, see below.
    y = nn_layer(dropped, 500, 10, 'layer2', act=tf.identity)

    with tf.name_scope('cross_entropy'):
        # The raw formulation of cross-entropy,
        #
        # tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.softmax(y)), reduction_indices=[1]))
        # can be numerically unstable.
        #
        # So here we use tf.nn.softmax_cross_entropy_with_logits on the raw outputs of the nn_layer above,
        # and then average across the batch.
        diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)
        with tf.name_scope('total'):
            cross_entropy = tf.reduce_mean(diff)
    tf.summary.scalar('cross_entropy', cross_entropy)

    with tf.name_scope('train'):
        train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(cross_entropy)

    with tf.name_scope('accuracy'):
        with tf.name_scope('correct_prediction'):
            correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))    # Attention: There is y_, not y
        with tf.name_scope('accuracy'):
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    tf.summary.scalar('accuracy', accuracy)

    # Merge all the summaries and write them out to /tmp/tensorflow/mnist/logs/mnist_with_summaries (by default)
    merged = tf.summary.merge_all()
    train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph)
    test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')

    tf.global_variables_initializer().run()

    # 2) Periodically save your embeddings in a LOG_DIR
    saver = tf.train.Saver()
    saver.save(sess, os.path.join(FLAGS.log_dir, "model.ckpt"), global_step=0)

    # Train the model, and also write summaries.
    # Every 10th step, measure test-set accuracy, and write test summaries
    # All other steps, run train_step on training data,

    def feed_dict(train):
        """Make a Tensorflow deed_dict: maps data onto Tensor placeholders."""
        if train or FLAGS.fake_data:
            xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data)
            k = FLAGS.dropout
        else:
            xs, ys = mnist.test.images, mnist.test.labels
            k = 1.0
        return {x: xs, y_: ys, keep_prob: k}    # Attention: There is y_, not y

    for i in range(FLAGS.max_steps):
        if i%10 == 0: # Record summaries and test-set accuracy
            summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))
            test_writer.add_summary(summary, i)
            print('Accuracy at step %s: %s' % (i, acc))
        else:  # Record train set summariess, and train
            if i%100 == 99: # Record execution stats
                run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
                run_metadata = tf.RunMetadata()
                summary, _ = sess.run([merged, train_step],
                                      feed_dict=feed_dict(True),
                                      options=run_options,
                                      run_metadata=run_metadata)
                train_writer.add_run_metadata(run_metadata, 'step%03d' % i)
                train_writer.add_summary(summary, i)
                print('Adding run metadata for ', i)
            else: # Record a summary
                summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
                train_writer.add_summary(summary, i)
    train_writer.close()
    test_writer.close()



    # 3) Associate metadata and sprite image with your embedding
    # Format: tensorflow/tensorboard/plugins/projector/projector_config.proto
    config = projector.ProjectorConfig()

    # You can add multiple embeddings. Here we add only one.
    embedding = config.embeddings.add()
    embedding.tensor_name = embedding_var.name
    # Link this tensor to its metadata file (e.g. labels).
    embedding.metadata_path = os.path.join(FLAGS.log_dir, 'metadata.tsv')

    # Use the same LOG_DIR where you stored your checkpoint.
    summary_writer = tf.summary.FileWriter(FLAGS.log_dir)

    embedding.sprite.image_path = os.path.join(FLAGS.log_dir, 'mnist_10k_sprite.png')
    embedding.sprite.single_image_dim.extend([28, 28])
    # The next line writes a projector_config.pbtxt in the LOG_DIR. TensorBoard will
    # read this file during startup.
    projector.visualize_embeddings(summary_writer, config)

    # Download img from: https://www.tensorflow.org/images/mnist_10k_sprite.png
    # and put it into FLAGS.log_dir


def main(_):    # Attention: There is a _ arg
    if tf.gfile.Exists(FLAGS.log_dir):
        tf.gfile.DeleteRecursively(FLAGS.log_dir)
    tf.gfile.MakeDirs(FLAGS.log_dir)
    train()


if __name__ == '__main__':

    parse = argparse.ArgumentParser()
    parse.add_argument('--fake_data', nargs='?', const=True, type=bool, default=False,
                       help='If true, uses fake data for ubit testing.')
    parse.add_argument('--max_steps', type=int, default=300,    #default=1000
                       help='Number of steps to run trainer.')
    parse.add_argument('--learning_rate', type=float, default=0.01,
                       help='Initial learning rate')
    parse.add_argument('--dropout', type=float, default=0.9,
                       help='Keep probability for training dropout.')
    parse.add_argument(
        '--data_dir',
        type=str,
        #default='/tmp/tensorflow/mnist/input_data',
        default='MNIST_data',
        help='Directory for storing input data')
    parse.add_argument(
        '--log_dir',
        type=str,
        default='/tmp/tensorflow/mnist/logs/mnist_with_summaries',
        help='Summaries log directory')
    FLAGS, unparsed = parse.parse_known_args()
    tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

# cd --your_log_dir
# tensorboard --log_dir=yourLogDir

你可能感兴趣的:(Tensorflow.TensorBoard.2.MNIST)