最大子序列和问题的几种实现

算法一,暴力法,时间复杂度O(n^3):

int MaxSubseqSum1( int A[], int N )  
{   int ThisSum, MaxSum = 0;
    int i, j, k;
    for( i = 0; i < N; i++ ) { /* i是子列左端位置 */
          for( j = i; j < N; j++ ) { /* j是子列右端位置 */
                  ThisSum = 0;  /* ThisSum是从A[i]到A[j]的子列和 */
                  for( k = i; k <= j; k++ )
                            ThisSum += A[k];
                            if( ThisSum > MaxSum ) /* 如果刚得到的这个子列和更大 */
                                      MaxSum = ThisSum;    /* 则更新结果 */
          } /* j循环结束 */
     } /* i循环结束 */
     return MaxSum;  
}

算法二,时间复杂度O(n^2):

int MaxSubseqSum2( int A[], int N )  
{   int ThisSum, MaxSum = 0;
    int i, j;
    for( i = 0; i < N; i++ ) { /* i是子列左端位置 */
          ThisSum = 0;  /* ThisSum是从A[i]到A[j]的子列和 */
          for( j = i; j < N; j++ ) { /* j是子列右端位置 */
                  ThisSum += A[j];        /*对于相同的i,不同的j,只要在j-1次循环的基础上累加1项即可*/ 
                  if( ThisSum > MaxSum ) /* 如果刚得到的这个子列和更大 */
                            MaxSum = ThisSum;    /* 则更新结果 */
          } /* j循环结束 */    
     } /* i循环结束 */    
     return MaxSum;  
}

算法三,在线处理,时间复杂度O(n):

int MaxSubseqSum4( int A[], int N )  
{   int ThisSum, MaxSum;
    int i;
    ThisSum = MaxSum = 0;
    for( i = 0; i < N; i++ ) {
          ThisSum += A[i]; /* 向右累加 */
          if( ThisSum > MaxSum )
                  MaxSum = ThisSum; /* 发现更大和则更新当前结果 */
          else if( ThisSum < 0 ) /* 如果当前子列和为负 */
                  ThisSum = 0; /* 则不可能使后面的部分和增大,抛弃之 */
    }
    return MaxSum;  
}

算法四,分治法,时间复杂度O(nlogn).

你可能感兴趣的:(最大子序列和问题的几种实现)