神仙题。为啥我第一眼看上去以为是个普及题
路径有两种,第一种是从 LCA 一边下去的,第二种是从 LCA 两边都下去了的。
先考虑第一种。
先枚举路径长度 \(h\)。
当 LCA 编号是 \(x\) 时,且所有儿子都是往左走时,和为 \((2^h-1)x\);所有儿子都往右走时,和为 \((2^h-1)x+2^h-1\)。显然 \((2^h-1)x\le s\le (2^h-1)x+2^h-1\)。
考虑从下往上第 \(i\) 个点从左儿子变成右儿子时(其它不变),总和会增加 \(2^i-1\)。
接下来我们发现无论这条路径长什么样,\(x\) 都等于 \(\lfloor\frac{s}{2^h-1}\rfloor\)。因为当 \(x\) 更小时,即使所有儿子都是往右走的,也没有 \(x\) 取 \(\lfloor\frac{s}{2^h-1}\rfloor\) 时所有儿子都往左走的和大,自然不可能和为 \(s\)。\(x\) 更大时同理。
所以我们想让总和再增加 \(s-(2^h-1)x\)。问题就是有多少种方案,从 \(2^1-1,2^2-1,\dots,2^{h-1}-1\) 中选出一些数(LCA 不能选),使得和为 \(s-(2^h-1)x\)。
这就简单了。枚举选了 \(cnt\) 个数,就是能否从 \(2^1,2^2,\dots,2^{h-1}\) 中选出一些数使得和为 \(s-(2^h-1)x+cnt\)。当且仅当 \(s-(2^h-1)x+cnt\) 中 \(1\) 的个数恰好为 \(cnt\) 方案为 \(1\),否则为 \(0\)。
接下来考虑第二种。
同样的,枚举左链和右链的长度 \(l\), \(r\)(都包括 LCA,至少我是这么写的)。同理可以推出 \(x\) 恒等于 \(\lfloor\frac{s-2^{r-1}+1}{2^l+2^r-3}\rfloor\)。
同理,考虑从全部是左儿子变成一些右儿子。(当然,LCA 的两个儿子除外)
问题就是有多少种方案,从 \(2^1-1,2^2-1,\dots,2^{l-1}-1,2^1-1,2^2-1,\dots,2^{r-1}-1\) 中选出一些数,使得和为 \(s-2^{r-1}+s-(2^l+2^r-3)x\)。
同样枚举个数 \(cnt\)。下文为了方便设 \(res=s-2^{r-1}+s-(2^l+2^r-3)x+cnt\)。
这回没办法了,老实上 DP。
令 \(f[i][j][k]\) 表示考虑 \(2^1\) 到 \(2^i\) 这些数,从中选出了 \(j\) 个,上一位有没有向这一位进位(\(k\) 是 01 变量)。
初始状态有 \(f[0][0][0]=1\)。要求是 \(f[\max(l,r)][cnt][0]\)。(由于选完之后不能再进位,所以 \(k=0\),此时 \(i=\max(l,r)\) 会更方便)
转移方程,枚举左子树选不选(设为 \(a\)),右子树选不选(设为 \(b\)),\(f[i+1][j+a+b][\lfloor\frac{k+a+b}{2}\rfloor]+=f[i][j][k]\)。
转移条件,首先对应的数要能选(即 \(i+1\ge l-1\) 时就选不了左子树了),另外 \(res\) 的第 \(i+1\) 位应恰好是 \((k+a+b)\bmod 2\)。
时间复杂度 \(O(\log^5s)\)。
代码
#include
using namespace std;
typedef long long ll;
const int maxn=100010,mod=998244353;
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
int x=0,f=0;char ch=getchar();
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
ll n,f[55][111][2];
int bitcnt(ll x){
int c=0;
for(;x;x&=x-1) c++;
return c;
}
ll solve1(){
ll ans=0;
FOR(i,1,50){
ll x=n/((1ll<=l-1 && a==1) continue;
if(i>=r-1 && b==1) continue;
if((k+a+b)%2==((res+cnt)>>i)%2) f[i][j+a+b][(k+a+b)/2]+=f[i-1][j][k];
}
// printf("f[%d][%d][0]=%lld,f[%d][%d][1]=%lld\n",i-1,j,f[i-1][j][0],i-1,j,f[i-1][j][1]);
}
ans+=f[max(l,r)][cnt][0];
}
}
return ans;
}
int main(){
scanf("%lld",&n);
printf("%lld\n",solve1()+solve2());
}