2019 Multi-University Training Contest 8

2019 Multi-University Training Contest 8


C. Acesrc and Good Numbers

题意 \(f(d,n)\) 表示 1 到 n 中,d 出现的次数。求小于等于 x 的最大的 \(n\) 满足 \(f(d,n)=n\)

做法

  • \(g(d,n)=f(d,n)-f(n)\),我们要求小于等于 \(x\) 极大的零点。
  • 注意到 \(n>10^{12}\) 一定不存在零点。 [比赛时注意到了这点]
  • Big-Small 战法。
  • 取 B 等于 \(10^6\),求 \(g(d,x)\),可以将 \(x\) 写成 \(x=k*B + t\) 形式。\(t = x\%B\)
  • \(k\) 值对 \(x\) 进行分块。
    • 如果 \(k\) 中有 d,那么 \(g(kB+t)\) 是关于 \(t\) 递增的。
    • 否则,\(|g(kB)|\) 不能太大,否则解体。

E. Acesrc and String Theory

solved by sdcgvhgj 284min -2
题意 求循环重复k次的子串的数量
做法

  • 枚举循环节大小len,那么合法串一定同时包含i和i+len两个位置
  • 计算左端点在\([i-len+1,i]\)的串包含i和i+len两个位置的合法左端点有哪些
  • 设i和i+len这两个前缀的最长公共后缀为k1,这两个后缀的最长公共前缀为k2
  • 那么合法位置的区间为\([max(i-len+1,i-k1+1),min(i,i+k2-(k-1)*len)]\)
  • k=1需要特判
  • 算后缀数组的时候字符串结束要置0,RE了两发

I. Calabash and Landlord

solved by sdcgvhgj 123min -4
题意 求两个矩形将平面划分成了几个联通块
做法

  • 枚举8个点两两中点check在哪些矩形中,算出不同包含关系的数量作为答案,WA
  • 意识到只包含在一个矩形中的区域可以有两块,rdc提出在3x3的格子合并联通块的做法,但感觉不太好写,选择在原代码基础上加两个判断,WA
  • 意识到应该枚举16个点的两两中点,或直接9个格子的中点,写错两发后AC

K. Roundgod and Milk Tea

solved by rdc, 63min -3

题意 \(n\) 个班级,第 \(i\) 个有 \(a_i\) 个人,\(b_i\) 杯奶茶,每个人只能喝别的班的奶茶,输出最多能喝多少杯奶茶。

做法

  • 二分图最大匹配问题,Hall 定理。\(|M|=|U|-max_{S \subset U} (|S|-|N(S)|)\)
  • \(U\) 进行讨论,要么为空集,要么为全集。

复盘

  • 一开始认为给每个人任意匹配一杯奶茶都是合法的。
  • 然后 WA,然后开始贪心匹配奶茶多的班级。
  • 很盲目。
  • 再盲猜 Hall 定理,就过了。
  • 比赛的时候想到的 Hall 定理是二分图存在完美匹配的充要条件,但还是不会证。
  • 题解中的做法,是 Hall 定理的推论。

你可能感兴趣的:(2019 Multi-University Training Contest 8)