- DeepSeek:技术创作者的内容革命,从代码到爆文的AI全栈攻略
不想加班的码小牛
人工智能aichatgpt
一、为什么技术创作者需要关注DeepSeek?作为CSDN的资深用户,你是否经历过这些痛点?选题焦虑:技术热点日新月异,如何抓住「大模型优化」或「量子计算落地」等前沿方向?写作卡顿:明明代码跑通了,却在技术原理描述环节反复修改效率瓶颈:既要写技术文档又要运营专栏,时间永远不够用DeepSeek的多模态理解能力(支持代码+自然语言混合输入)和领域自适应特性(自动识别技术文档/教程/测评等文体),让它
- SDN架构解密:控制面如何“指挥”万亿级网络? ——基于“大脑-四肢”模型的三层架构深度解析
不想加班的码小牛
网络架构人工智能ai
摘要本文以“大脑-四肢”类比SDN三层架构,揭示控制器如何通过全局视图管理、南向接口标准化(如OpenFlow)与北向API开放能力,实现对万亿级网络的集中化控制。文中包含OpenFlow协议代码示例、网络拓扑公式及架构图,力求呈现技术细节与实战价值。一、SDN架构的“大脑-四肢”隐喻SDN通过控制平面-数据平面-应用平面的三层架构,构建了网络控制的“中枢神经系统”:控制层(大脑):集中式控制器掌
- MCU详解:嵌入式系统的“智慧之心”
绿算技术
MCU架构介绍单片机嵌入式硬件
在现代电子设备中,MCU(MicrocontrollerUnit,微控制器)扮演着至关重要的角色。从智能家居到工业控制,从汽车电子到医疗设备,MCU以其小巧、低功耗和高集成度的特点,成为嵌入式系统的核心组件。由绿算技术带领着大家一起领略MCU的风采。MCU的功能:嵌入式系统的“全能选手”MCU是一种集成了处理器、存储器和外设接口的微型计算机系统,其核心功能包括:1.数据处理·算术与逻辑运算:MCU
- NPU的应用场景:从云端到边缘
绿算技术
NPU架构介绍缓存人工智能科技深度学习
NPU的应用场景非常广泛,主要包括以下几个方面:1.云计算与数据中心AI推理服务:在云端提供高效的AI推理服务,例如图像识别、语音识别。模型训练加速:在大规模训练任务中,NPU可以作为加速单元,提升训练效率。2.边缘计算智能摄像头:在安防监控中,NPU可以实时处理视频流,实现目标检测和跟踪。智能音箱:在语音助手中,NPU可以加速语音识别和自然语言处理任务。3.自动驾驶实时感知:NPU可以加速自动驾
- NPU的工作原理:神经网络计算的流水线
绿算技术
NPU架构介绍神经网络人工智能深度学习
NPU的工作原理可以概括为以下几个步骤:1.模型加载·将训练好的神经网络模型加载到NPU的内存中。2.数据输入·输入数据(如图像、语音)通过接口传输到NPU。3.计算执行·NPU根据模型结构,依次执行卷积、池化、全连接等计算任务。·矩阵乘法单元和卷积加速器并行工作,高效完成计算。4.结果输出·计算完成后,输出结果(如分类标签、检测框)返回给主机或其他处理器。5.任务调度·在多任务场景下,NPU的任
- GPU的优势:并行计算的利器
绿算技术
GPU架构介绍科技gpu算力
GPU相较于CPU,在并行计算方面具有以下优势:强大的并行计算能力:GPU拥有成千上万个计算核心,能够同时执行大量的线程,非常适合处理数据并行性高的任务。高内存带宽:GPU配备了高带宽的内存子系统,能够快速地将数据传输到计算核心,满足大规模数据处理的需求。高效的线程调度:GPU采用硬件多线程技术,能够快速地切换线程上下文,最大限度地提高计算资源的利用率。灵活的编程模型:GPU提供了丰富的编程模型和
- LINUX下的tcp协议
Ccc030.
linuxtcp/ip运维
TCP1.面向数据流(流式套接字)2.建立连接3.安全可靠的传输协议应用场景:HTTP,MQTT,FTP三次握手:TCP建立连接时,需要进行三次握手,确保收发数据前,双方都已准备就绪。四次挥手:TCP断开连接时,需要进行四次挥手,从而确保通信双发都已收发数据结束。C/S模型:ssize_trecv(intsockfd,void*buf,size_tlen,intflags);功能:从tcp套接字接
- JVM性能调优实战:从理论到线上问题排查
SuperMale-zxq
项目实战javapythonc++jvmjava-ee
JVM性能调优实战:从理论到线上问题排查线上系统突然变慢,CPU飙升,内存告警,业务超时……面对这些危机时刻,你是束手无策还是胸有成竹?本文将带你掌握JVM性能调优的核心方法,从理论到实战,解决真实环境中的性能难题。为什么大多数JVM调优都失败了?某电商平台的"双11"大促活动,系统突然响应缓慢,交易量锐减。运维团队紧急扩容,开发团队调整GC参数,架构师建议重启服务……一系列"标准操作"后,系统性
- 警惕!Ollama大模型工具的安全风险及应对策略
码事漫谈
AI安全
文章目录**Ollama的安全隐患:不容忽视的风险****未授权访问:门户洞开的风险****数据泄露:敏感信息的外泄****漏洞利用:历史遗留的隐患****安全加固:守护数据与服务的防线****限制监听范围:内网隔离的保护****配置防火墙规则:双向过滤的防御****实施多层认证与访问控制:密钥与白名单的双重保障****禁用危险操作接口:限制权限的策略****修复历史漏洞:及时更新的重要性****
- 孪生网络模型,当训练集与测试集共用一个数据集时,训练准确率为100%,而测试准确率仍在50%左右浮动
bug菌¹
全栈Bug调优(实战版)pytorch机器学习
本文收录于《全栈Bug调优(实战版)》专栏,主要记录项目实战过程中所遇到的Bug或因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!问题描述【问题】孪生网络模型,测试效果异常:当训练集与测试集共用一个数据集(样本、标签完全相同)时,训练准确率为100%,而测试准确率仍在50%左右浮动(正常来说测试的都
- 必看!一文读懂知识蒸馏技术
小天才学习机打游戏
人工智能知识图谱神经网络langchainwindows
导读最近,DeepSeek的爆火让大家对人工智能领域的技术发展又有了新的关注。而知识蒸馏作为深度学习中一项重要的技术,也在背后默默地发挥着作用,今天就来给大家详细介绍一下知识蒸馏及其相关原理。1.知识蒸馏是什么在深度学习领域,大型模型(如DeepSeek)通常具有强大的性能,但它们的计算量和参数量都非常庞大,这使得它们难以在资源受限的设备(如移动设备或嵌入式设备)上部署。例如,GPT-3在570G
- 从零开始大模型开发与微调:PyTorch 2.0深度学习环境搭建
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:PyTorch2.0深度学习环境搭建作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习在各个领域的广泛应用,大模型开发与微调成为了当前研究的热点。大模型能够学习到丰富的知识,并在各个下游任务上取得优异的性能。然而,大模型开发与微调需要强大的计算资源和专业的知识背景,这对于许多初学者和研究
- Langchain如何调用Siliconflow的模型
LJY_LU
langchainpython开发语言AIGC人工智能数据挖掘nlp
硅基流动之前宣布了部分模型免费,那我们就可以调用API来搞些事情。官网(ChatCompletions(siliconflow.cn))上给出了详细的调用方式,我们可以方便的ctrlC和ctrlV而Langchain支持自定义封装LLM(CustomLLM|️Langchain)那我们就可以结合搞点事情,封装好的代码在这,需要自取:fromlangchain.llms.baseimportLLMf
- 【Java网络编程】OSI七层网络模型与TCP/IP协议簇
xiaoli8748_软件开发
网络通信网络tcp/ip网络协议
1.1、OSI七层网络模型OSI七层网络模型中,每层的功能如下:应用层:人与计算机网络交互的窗口。表示层:负责数据格式的封装,如加密、压缩、编解码等。会话层:建立、终止、管理不同端间的会话连接。传输层:提供端到端(两台机器)之间的传输机制,以及提供流量控制、出错效验。网络层:逻辑寻址,IP地址,在下两层的基础上向资源子网提供服务。数据链路层:负责建立和管理节点间的链路,将数据封装成帧,进行可靠传输
- 如何快速开发一款AI小程序?基于微信云开发的实战指南
一键难忘
人工智能小程序微信
如何快速开发一款AI小程序?基于微信云开发的实战指南引言微信小程序凭借其轻便、易推广等特点,已成为应用开发的重要方式之一。而AI技术的快速发展让智能化应用成为可能。通过微信云开发(CloudBase)与小程序结合,开发者可以实现从前端到后端的一站式AI应用开发。本文将深入讲解如何利用微信云开发快速搭建一款AI小程序,展示从模型训练到云端部署的完整流程。准备工作在开始开发之前,确保完成以下准备工作:
- AI大模型学习路线及相关资源推荐
python游乐园
学习资源学习PythonAIAI编程人工智能
哈喽,大家好!本文为大家带来AI大模型学习路线及相关资源推荐,这对于学习掌握AI大模型很有帮助呦,希望大家多多点赞收藏~感谢~~1AI大模型的基础信息1.1什么是AI大模型AI大模型,即人工智能大型模型,是一种基于深度学习技术,具有海量参数、强大算力支持、能够处理和生成复杂数据的人工智能模型。1.2AI大模型的主要特点规模庞大:AI大模型通常包含海量的参数。例如,谷歌的BERT模型在最初发布时就有
- Mac下安装Zed以及Zed对MCP(模型上下文协议)的支持
skywalk8163
人工智能macos前端服务器
Zed是当前新流行的一种编辑器,支持MCP(模型上下文协议)Mac下安装Zed比较简单,直接有安装包,在这里:brewinstall--caskzedMacMonterey下是可以安装上的,亲测有效。配置使用Ctrl+Shift+P调出AI,然后设置使用的模型可以使用deepseek,但是没有找到使用自建服务器的设置方法,有些遗憾。附加学习关于Zed里面的MCP部分,手册:ModelContext
- 数据分布偏移检测:保障模型在生产环境中的稳定性
trust Tomorrow
机器学习python机器学习人工智能深度学习
数据分布偏移检测:保障模型在生产环境中的稳定性引言在机器学习系统从开发环境部署到生产环境的过程中,数据分布偏移问题是影响模型性能的主要挑战之一。当训练数据与生产环境中的数据分布不一致时,即使是经过精心调优的模型也可能表现出明显的性能下降。本文将深入探讨数据分布偏移的检测方法,并提供一套系统化的解决方案,帮助读者构建更加稳健的机器学习系统。1.数据分布偏移问题概述1.1分布偏移的类型数据分布偏移主要
- 在线 SQL 转 Python ORM工具
A__tao
sqloracle数据库
一款高效的在线SQL转PythonORM,支持自动解析SQL语句并生成PythonORM模型代码,适用于数据库管理、后端开发和ORM结构映射。无需手写ORM模型,一键转换SQL结构,提升开发效率,简化数据库操作。gotool
- LangChain深度解析以及主要应用场景
小Rr
langchainpythondjangonumpy
文章目录LangChain是什么?LangChain的核心组件(1)PromptTemplates(提示模板)原理代码实例应用场景提示词优化策略(2)LLMs(大语言模型)原理代码实例应用场景调优策略(3)Chains(多步任务链)原理代码实例应用场景优化策略(4)Memory(记忆)原理代码实例应用场景优化策略(5)Agents(智能代理)原理代码实例应用场景优化策略案例分享案例1:电商智能客服
- AI大模型测试用例生成平台
王根生
测试开发测试用例质量保障AI编程nlp测试管理软件测试
AI测试用例生成平台项目背景技术栈业务描述项目展示项目重难点项目背景针对传统接口测试用例设计高度依赖人工经验、重复工作量大、覆盖场景有限等行业痛点,基于大语言模型技术实现接口测试用例智能生成系统。技术栈LangChain框架+GLM-4模型+PromptEngineering+Flask+Python+Bootstrap+jQuery业务描述用户在该平台上传Markdown形式的接口文档,点击生成
- Deepseek-R1大模型微调实战技术深度解析
大势下的牛马
搭建本地gptDeepseek大模型评测微调
一、Deepseek-R1架构特性与微调适配性分析1.1核心架构创新对微调的影响Deepseek-R1基于Deepseek-V3-Base架构,通过MoE(Mixture-of-Experts)与MLA(Multi-HeadLatentAttention)的协同设计,实现了参数规模与计算效率的平衡。其6710亿参数总量中,每个token仅激活37B参数的机制,使得微调过程中可针对不同任务动态调整专
- 模型可解释性:基于博弈论的SHAP值计算与特征贡献度分析(附PyTorch/TensorFlow实现)
燃灯工作室
Aipytorchtensorflow人工智能
一、技术原理与数学推导(含典型案例)1.1Shapley值基础公式SHAP值基于合作博弈论中的Shapley值,计算公式为:ϕi=∑S⊆F∖{i}∣S∣!(∣F∣−∣S∣−1)!∣F∣![f(S∪{i})−f(S)]\phi_i=\sum_{S\subseteqF\setminus\{i\}}\frac{|S|!(|F|-|S|-1)!}{|F|!}[f(S\cup\{i\})-f(S)]ϕi=S
- 模型可解释性:基于因果推理的反事实生成与决策可视化
燃灯工作室
Ai人工智能数学建模学习机器学习
1.技术原理与数学公式1.1因果推理基础结构方程模型(SEM):X=fX(PaX,UX)X=f_X(Pa_X,U_X)X=fX(PaX,UX)其中PaXPa_XPaX为父节点集合,UXU_XUX为外生变量反事实定义:YX=x(u)=Ydo(X=x)(u)Y_{X=x}(u)=Y_{do(X=x)}(u)YX=x(u)=Ydo(X=x)(u)表示在相同背景条件uuu下,强制变量XXX取xxx时的结果
- 自动化特征选择:基于模型重要性的递归消除原理与实战指南
燃灯工作室
Ai自动化运维
一、技术原理与数学公式1.1递归特征消除(RFE)核心思想J(S)=∑i=1n∣wi∣(特征重要性评分)J(S)=\sum_{i=1}^n|w_i|\quad(特征重要性评分)J(S)=i=1∑n∣wi∣(特征重要性评分)Sk+1=Sk−argminfJ(Sk∖{f})(迭代消除策略)S_{k+1}=S_k-\arg\min_{f}J(S_k\setminus\{f\})\quad(迭代消除策
- Nature:你的大脑衰老速度受这64个基因影响
量子位
你的大脑衰老速度,原来受这64个基因影响!事情是这样的。根据Nature最新报道,科学家们通过利用AI模型分析大量脑部扫描和遗传数据,确定了64个影响大脑衰老速度的基因,并指出了13种潜在的抗衰老药物。相关研究发表在最新一期Science子刊《ScienceAdvances》上。按照Nature的评价,这是尝试确定影响器官衰退遗传因素这一研究领域里:迄今为止规模最大的一次尝试都柏林圣三一学院的神经
- 推理流水线DAG调度:多模型组合执行优化方案
燃灯工作室
Ai人工智能数学建模学习机器学习计算机视觉
一、技术原理与数学模型1.1DAG调度核心公式设推理流水线由n个模型节点组成,定义:V={v1,v2,...,vn}V=\{v_1,v_2,...,v_n\}V={v1,v2,...,vn}为节点集合E={(vi,vj)∣vi→vj}E=\{(v_i,v_j)|v_i\rightarrowv_j\}E={(vi,vj)∣vi→vj}为边集合C(vi)C(v_i)C(vi)为节点viv_ivi的计算
- 边缘设备模型量化部署:TFLite INT8校准实现细节深度解析
燃灯工作室
Ai人工智能机器学习
一、技术原理与数学公式INT8量化的核心是通过线性映射将浮点数值范围([-max,max])映射到8位整数范围([-128,127])。校准过程通过分析真实数据分布确定最优缩放因子(scale)和零点(zeropoint):量化公式:Q=round(float_valuescale)+zero_pointQ=round(\frac{float\_value}{scale})+zero\_point
- 基于时间序列预测的推理服务弹性扩缩容实战指南:(行业案例+数学推导+源码解析)
燃灯工作室
Ai计算机视觉语音识别目标检测机器学习人工智能
技术原理(数学公式)整体架构请求量预测→扩缩容决策→资源配置动态调整三阶段闭环,周期为5-30分钟核心预测模型(时间序列预测)LSTM预测公式(CSDN兼容格式):$$h_t=\text{LSTM}(x_t,h_{t-1})\\\hat{y}_{t+1}=W_h\cdoth_t+b_h$$其中Wh∈Rd×1W_h\in\mathbb{R}^{d\times1}Wh∈Rd×1为权重矩阵,ddd为隐藏
- 模型蒸馏:从复杂到精简,AI技术的“瘦身”秘籍
lmtealily
人工智能
引言在人工智能的浪潮中,大型模型如BERT、GPT系列等在自然语言处理(NLP)、计算机视觉(CV)等领域取得了显著的成果。然而,这些“庞然大物”通常拥有数十亿甚至数千亿个参数,计算和存储成本极高,难以部署到资源受限的设备上。为了解决这一问题,模型蒸馏技术应运而生。模型蒸馏是一种将大型复杂模型的知识迁移到小型简单模型的技术,旨在保持高性能的同时大幅减少模型的参数量和计算复杂度。本文将带你深入了解模
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIlinuxPHPandroid
╔-----------------------------------╗┆
- zookeeper admin 笔记
braveCS
zookeeper
Required Software
1) JDK>=1.6
2)推荐使用ensemble的ZooKeeper(至少3台),并run on separate machines
3)在Yahoo!,zk配置在特定的RHEL boxes里,2个cpu,2G内存,80G硬盘
数据和日志目录
1)数据目录里的文件是zk节点的持久化备份,包括快照和事务日
- Spring配置多个连接池
easterfly
spring
项目中需要同时连接多个数据库的时候,如何才能在需要用到哪个数据库就连接哪个数据库呢?
Spring中有关于dataSource的配置:
<bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource"
&nb
- Mysql
171815164
mysql
例如,你想myuser使用mypassword从任何主机连接到mysql服务器的话。
GRANT ALL PRIVILEGES ON *.* TO 'myuser'@'%'IDENTIFIED BY 'mypassword' WI
TH GRANT OPTION;
如果你想允许用户myuser从ip为192.168.1.6的主机连接到mysql服务器,并使用mypassword作
- CommonDAO(公共/基础DAO)
g21121
DAO
好久没有更新博客了,最近一段时间工作比较忙,所以请见谅,无论你是爱看呢还是爱看呢还是爱看呢,总之或许对你有些帮助。
DAO(Data Access Object)是一个数据访问(顾名思义就是与数据库打交道)接口,DAO一般在业
- 直言有讳
永夜-极光
感悟随笔
1.转载地址:http://blog.csdn.net/jasonblog/article/details/10813313
精华:
“直言有讳”是阿里巴巴提倡的一种观念,而我在此之前并没有很深刻的认识。为什么呢?就好比是读书时候做阅读理解,我喜欢我自己的解读,并不喜欢老师给的意思。在这里也是。我自己坚持的原则是互相尊重,我觉得阿里巴巴很多价值观其实是基本的做人
- 安装CentOS 7 和Win 7后,Win7 引导丢失
随便小屋
centos
一般安装双系统的顺序是先装Win7,然后在安装CentOS,这样CentOS可以引导WIN 7启动。但安装CentOS7后,却找不到Win7 的引导,稍微修改一点东西即可。
一、首先具有root 的权限。
即进入Terminal后输入命令su,然后输入密码即可
二、利用vim编辑器打开/boot/grub2/grub.cfg文件进行修改
v
- Oracle备份与恢复案例
aijuans
oracle
Oracle备份与恢复案例
一. 理解什么是数据库恢复当我们使用一个数据库时,总希望数据库的内容是可靠的、正确的,但由于计算机系统的故障(硬件故障、软件故障、网络故障、进程故障和系统故障)影响数据库系统的操作,影响数据库中数据的正确性,甚至破坏数据库,使数据库中全部或部分数据丢失。因此当发生上述故障后,希望能重构这个完整的数据库,该处理称为数据库恢复。恢复过程大致可以分为复原(Restore)与
- JavaEE开源快速开发平台G4Studio v5.0发布
無為子
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V5.0版本已经正式发布。
访问G4Studio网站
http://www.g4it.org
2013-04-06 发布G4Studio_V5.0版本
功能新增
(1). 新增了调用Oracle存储过程返回游标,并将游标映射为Java List集合对象的标
- Oracle显示根据高考分数模拟录取
百合不是茶
PL/SQL编程oracle例子模拟高考录取学习交流
题目要求:
1,创建student表和result表
2,pl/sql对学生的成绩数据进行处理
3,处理的逻辑是根据每门专业课的最低分线和总分的最低分数线自动的将录取和落选
1,创建student表,和result表
学生信息表;
create table student(
student_id number primary key,--学生id
- 优秀的领导与差劲的领导
bijian1013
领导管理团队
责任
优秀的领导:优秀的领导总是对他所负责的项目担负起责任。如果项目不幸失败了,那么他知道该受责备的人是他自己,并且敢于承认错误。
差劲的领导:差劲的领导觉得这不是他的问题,因此他会想方设法证明是他的团队不行,或是将责任归咎于团队中他不喜欢的那几个成员身上。
努力工作
优秀的领导:团队领导应该是团队成员的榜样。至少,他应该与团队中的其他成员一样努力工作。这仅仅因为他
- js函数在浏览器下的兼容
Bill_chen
jquery浏览器IEDWRext
做前端开发的工程师,少不了要用FF进行测试,纯js函数在不同浏览器下,名称也可能不同。对于IE6和FF,取得下一结点的函数就不尽相同:
IE6:node.nextSibling,对于FF是不能识别的;
FF:node.nextElementSibling,对于IE是不能识别的;
兼容解决方式:var Div = node.nextSibl
- 【JVM四】老年代垃圾回收:吞吐量垃圾收集器(Throughput GC)
bit1129
垃圾回收
吞吐量与用户线程暂停时间
衡量垃圾回收算法优劣的指标有两个:
吞吐量越高,则算法越好
暂停时间越短,则算法越好
首先说明吞吐量和暂停时间的含义。
垃圾回收时,JVM会启动几个特定的GC线程来完成垃圾回收的任务,这些GC线程与应用的用户线程产生竞争关系,共同竞争处理器资源以及CPU的执行时间。GC线程不会对用户带来的任何价值,因此,好的GC应该占
- J2EE监听器和过滤器基础
白糖_
J2EE
Servlet程序由Servlet,Filter和Listener组成,其中监听器用来监听Servlet容器上下文。
监听器通常分三类:基于Servlet上下文的ServletContex监听,基于会话的HttpSession监听和基于请求的ServletRequest监听。
ServletContex监听器
ServletContex又叫application
- 博弈AngularJS讲义(16) - 提供者
boyitech
jsAngularJSapiAngularProvider
Angular框架提供了强大的依赖注入机制,这一切都是有注入器(injector)完成. 注入器会自动实例化服务组件和符合Angular API规则的特殊对象,例如控制器,指令,过滤器动画等。
那注入器怎么知道如何去创建这些特殊的对象呢? Angular提供了5种方式让注入器创建对象,其中最基础的方式就是提供者(provider), 其余四种方式(Value, Fac
- java-写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
bylijinnan
java
public class CommonSubSequence {
/**
* 题目:写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
* 写一个版本算法复杂度O(N^2)和一个O(N) 。
*
* O(N^2):对于a中的每个字符,遍历b中的每个字符,如果相同,则拷贝到新字符串中。
* O(
- sqlserver 2000 无法验证产品密钥
Chen.H
sqlwindowsSQL ServerMicrosoft
在 Service Pack 4 (SP 4), 是运行 Microsoft Windows Server 2003、 Microsoft Windows Storage Server 2003 或 Microsoft Windows 2000 服务器上您尝试安装 Microsoft SQL Server 2000 通过卷许可协议 (VLA) 媒体。 这样做, 收到以下错误信息CD KEY的 SQ
- [新概念武器]气象战争
comsci
气象战争的发动者必须是拥有发射深空航天器能力的国家或者组织....
原因如下:
地球上的气候变化和大气层中的云层涡旋场有密切的关系,而维持一个在大气层某个层次
- oracle 中 rollup、cube、grouping 使用详解
daizj
oraclegroupingrollupcube
oracle 中 rollup、cube、grouping 使用详解 -- 使用oracle 样例表演示 转自namesliu
-- 使用oracle 的样列库,演示 rollup, cube, grouping 的用法与使用场景
--- ROLLUP , 为了理解分组的成员数量,我增加了 分组的计数 COUNT(SAL)
- 技术资料汇总分享
Dead_knight
技术资料汇总 分享
本人汇总的技术资料,分享出来,希望对大家有用。
http://pan.baidu.com/s/1jGr56uE
资料主要包含:
Workflow->工作流相关理论、框架(OSWorkflow、JBPM、Activiti、fireflow...)
Security->java安全相关资料(SSL、SSO、SpringSecurity、Shiro、JAAS...)
Ser
- 初一下学期难记忆单词背诵第一课
dcj3sjt126com
englishword
could 能够
minute 分钟
Tuesday 星期二
February 二月
eighteenth 第十八
listen 听
careful 小心的,仔细的
short 短的
heavy 重的
empty 空的
certainly 当然
carry 携带;搬运
tape 磁带
basket 蓝子
bottle 瓶
juice 汁,果汁
head 头;头部
- 截取视图的图片, 然后分享出去
dcj3sjt126com
OSObjective-C
OS 7 has a new method that allows you to draw a view hierarchy into the current graphics context. This can be used to get an UIImage very fast.
I implemented a category method on UIView to get the vi
- MySql重置密码
fanxiaolong
MySql重置密码
方法一:
在my.ini的[mysqld]字段加入:
skip-grant-tables
重启mysql服务,这时的mysql不需要密码即可登录数据库
然后进入mysql
mysql>use mysql;
mysql>更新 user set password=password('新密码') WHERE User='root';
mysq
- Ehcache(03)——Ehcache中储存缓存的方式
234390216
ehcacheMemoryStoreDiskStore存储驱除策略
Ehcache中储存缓存的方式
目录
1 堆内存(MemoryStore)
1.1 指定可用内存
1.2 驱除策略
1.3 元素过期
2 &nbs
- spring mvc中的@propertysource
jackyrong
spring mvc
在spring mvc中,在配置文件中的东西,可以在java代码中通过注解进行读取了:
@PropertySource 在spring 3.1中开始引入
比如有配置文件
config.properties
mongodb.url=1.2.3.4
mongodb.db=hello
则代码中
@PropertySource(&
- 重学单例模式
lanqiu17
单例Singleton模式
最近在重新学习设计模式,感觉对模式理解更加深刻。觉得有必要记下来。
第一个学的就是单例模式,单例模式估计是最好理解的模式了。它的作用就是防止外部创建实例,保证只有一个实例。
单例模式的常用实现方式有两种,就人们熟知的饱汉式与饥汉式,具体就不多说了。这里说下其他的实现方式
静态内部类方式:
package test.pattern.singleton.statics;
publ
- .NET开源核心运行时,且行且珍惜
netcome
java.net开源
背景
2014年11月12日,ASP.NET之父、微软云计算与企业级产品工程部执行副总裁Scott Guthrie,在Connect全球开发者在线会议上宣布,微软将开源全部.NET核心运行时,并将.NET 扩展为可在 Linux 和 Mac OS 平台上运行。.NET核心运行时将基于MIT开源许可协议发布,其中将包括执行.NET代码所需的一切项目——CLR、JIT编译器、垃圾收集器(GC)和核心
- 使用oscahe缓存技术减少与数据库的频繁交互
Everyday都不同
Web高并发oscahe缓存
此前一直不知道缓存的具体实现,只知道是把数据存储在内存中,以便下次直接从内存中读取。对于缓存的使用也没有概念,觉得缓存技术是一个比较”神秘陌生“的领域。但最近要用到缓存技术,发现还是很有必要一探究竟的。
缓存技术使用背景:一般来说,对于web项目,如果我们要什么数据直接jdbc查库好了,但是在遇到高并发的情形下,不可能每一次都是去查数据库,因为这样在高并发的情形下显得不太合理——
- Spring+Mybatis 手动控制事务
toknowme
mybatis
@Override
public boolean testDelete(String jobCode) throws Exception {
boolean flag = false;
&nbs
- 菜鸟级的android程序员面试时候需要掌握的知识点
xp9802
android
熟悉Android开发架构和API调用
掌握APP适应不同型号手机屏幕开发技巧
熟悉Android下的数据存储
熟练Android Debug Bridge Tool
熟练Eclipse/ADT及相关工具
熟悉Android框架原理及Activity生命周期
熟练进行Android UI布局
熟练使用SQLite数据库;
熟悉Android下网络通信机制,S